'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  active(f(X)) -> mark(if(X, c(), f(true())))
     , active(if(true(), X, Y)) -> mark(X)
     , active(if(false(), X, Y)) -> mark(Y)
     , active(f(X)) -> f(active(X))
     , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
     , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
     , f(mark(X)) -> mark(f(X))
     , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
     , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
     , proper(f(X)) -> f(proper(X))
     , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
     , proper(c()) -> ok(c())
     , proper(true()) -> ok(true())
     , proper(false()) -> ok(false())
     , f(ok(X)) -> ok(f(X))
     , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
     , top(mark(X)) -> top(proper(X))
     , top(ok(X)) -> top(active(X))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  active^#(f(X)) -> c_0(if^#(X, c(), f(true())))
    , active^#(if(true(), X, Y)) -> c_1()
    , active^#(if(false(), X, Y)) -> c_2()
    , active^#(f(X)) -> c_3(f^#(active(X)))
    , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))
    , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))
    , f^#(mark(X)) -> c_6(f^#(X))
    , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
    , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
    , proper^#(f(X)) -> c_9(f^#(proper(X)))
    , proper^#(if(X1, X2, X3)) ->
      c_10(if^#(proper(X1), proper(X2), proper(X3)))
    , proper^#(c()) -> c_11()
    , proper^#(true()) -> c_12()
    , proper^#(false()) -> c_13()
    , f^#(ok(X)) -> c_14(f^#(X))
    , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
    , top^#(mark(X)) -> c_16(top^#(proper(X)))
    , top^#(ok(X)) -> c_17(top^#(active(X)))}
  
  The usable rules are:
   {  active(f(X)) -> mark(if(X, c(), f(true())))
    , active(if(true(), X, Y)) -> mark(X)
    , active(if(false(), X, Y)) -> mark(Y)
    , active(f(X)) -> f(active(X))
    , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
    , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
    , f(mark(X)) -> mark(f(X))
    , proper(f(X)) -> f(proper(X))
    , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
    , proper(c()) -> ok(c())
    , proper(true()) -> ok(true())
    , proper(false()) -> ok(false())
    , f(ok(X)) -> ok(f(X))
    , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
    , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
    , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
  
  The estimated dependency graph contains the following edges:
   {active^#(f(X)) -> c_0(if^#(X, c(), f(true())))}
     ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
   {active^#(f(X)) -> c_3(f^#(active(X)))}
     ==> {f^#(ok(X)) -> c_14(f^#(X))}
   {active^#(f(X)) -> c_3(f^#(active(X)))}
     ==> {f^#(mark(X)) -> c_6(f^#(X))}
   {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
     ==> {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
   {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
     ==> {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
   {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
     ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
   {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
     ==> {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
   {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
     ==> {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
   {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
     ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
   {f^#(mark(X)) -> c_6(f^#(X))}
     ==> {f^#(ok(X)) -> c_14(f^#(X))}
   {f^#(mark(X)) -> c_6(f^#(X))}
     ==> {f^#(mark(X)) -> c_6(f^#(X))}
   {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
     ==> {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
   {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
     ==> {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
   {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
     ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
   {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
     ==> {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
   {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
     ==> {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
   {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
     ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
   {proper^#(f(X)) -> c_9(f^#(proper(X)))}
     ==> {f^#(ok(X)) -> c_14(f^#(X))}
   {proper^#(f(X)) -> c_9(f^#(proper(X)))}
     ==> {f^#(mark(X)) -> c_6(f^#(X))}
   {proper^#(if(X1, X2, X3)) ->
    c_10(if^#(proper(X1), proper(X2), proper(X3)))}
     ==> {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
   {proper^#(if(X1, X2, X3)) ->
    c_10(if^#(proper(X1), proper(X2), proper(X3)))}
     ==> {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
   {proper^#(if(X1, X2, X3)) ->
    c_10(if^#(proper(X1), proper(X2), proper(X3)))}
     ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
   {f^#(ok(X)) -> c_14(f^#(X))}
     ==> {f^#(ok(X)) -> c_14(f^#(X))}
   {f^#(ok(X)) -> c_14(f^#(X))}
     ==> {f^#(mark(X)) -> c_6(f^#(X))}
   {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
     ==> {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
   {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
     ==> {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
   {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
     ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
   {top^#(mark(X)) -> c_16(top^#(proper(X)))}
     ==> {top^#(ok(X)) -> c_17(top^#(active(X)))}
   {top^#(mark(X)) -> c_16(top^#(proper(X)))}
     ==> {top^#(mark(X)) -> c_16(top^#(proper(X)))}
   {top^#(ok(X)) -> c_17(top^#(active(X)))}
     ==> {top^#(ok(X)) -> c_17(top^#(active(X)))}
   {top^#(ok(X)) -> c_17(top^#(active(X)))}
     ==> {top^#(mark(X)) -> c_16(top^#(proper(X)))}
  
  We consider the following path(s):
   1) {  top^#(mark(X)) -> c_16(top^#(proper(X)))
       , top^#(ok(X)) -> c_17(top^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(f(X)) -> mark(if(X, c(), f(true())))
       , active(if(true(), X, Y)) -> mark(X)
       , active(if(false(), X, Y)) -> mark(Y)
       , active(f(X)) -> f(active(X))
       , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
       , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
       , proper(f(X)) -> f(proper(X))
       , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
       , proper(c()) -> ok(c())
       , proper(true()) -> ok(true())
       , proper(false()) -> ok(false())
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
       , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
       , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(X)) -> mark(if(X, c(), f(true())))
               , active(if(true(), X, Y)) -> mark(X)
               , active(if(false(), X, Y)) -> mark(Y)
               , active(f(X)) -> f(active(X))
               , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
               , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
               , proper(f(X)) -> f(proper(X))
               , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
               , proper(c()) -> ok(c())
               , proper(true()) -> ok(true())
               , proper(false()) -> ok(false())
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
               , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
               , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , top^#(mark(X)) -> c_16(top^#(proper(X)))
               , top^#(ok(X)) -> c_17(top^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_16(x1) = [1] x1 + [0]
                  c_17(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(c()) -> ok(c())
             , proper(true()) -> ok(true())
             , proper(false()) -> ok(false())}
            and weakly orienting the rules
            {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(c()) -> ok(c())
               , proper(true()) -> ok(true())
               , proper(false()) -> ok(false())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [1] x1 + [5]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_16(x1) = [1] x1 + [0]
                  c_17(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {top^#(ok(X)) -> c_17(top^#(active(X)))}
            and weakly orienting the rules
            {  proper(c()) -> ok(c())
             , proper(true()) -> ok(true())
             , proper(false()) -> ok(false())
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(ok(X)) -> c_17(top^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [1] x1 + [5]
                  ok(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [1]
                  c_16(x1) = [1] x1 + [0]
                  c_17(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(if(true(), X, Y)) -> mark(X)}
            and weakly orienting the rules
            {  top^#(ok(X)) -> c_17(top^#(active(X)))
             , proper(c()) -> ok(c())
             , proper(true()) -> ok(true())
             , proper(false()) -> ok(false())
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(if(true(), X, Y)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [8]
                  false() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_16(x1) = [1] x1 + [0]
                  c_17(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(if(false(), X, Y)) -> mark(Y)}
            and weakly orienting the rules
            {  active(if(true(), X, Y)) -> mark(X)
             , top^#(ok(X)) -> c_17(top^#(active(X)))
             , proper(c()) -> ok(c())
             , proper(true()) -> ok(true())
             , proper(false()) -> ok(false())
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(if(false(), X, Y)) -> mark(Y)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [4]
                  mark(x1) = [1] x1 + [10]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8]
                  c() = [14]
                  true() = [1]
                  false() = [4]
                  proper(x1) = [1] x1 + [10]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_16(x1) = [1] x1 + [3]
                  c_17(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {top^#(mark(X)) -> c_16(top^#(proper(X)))}
            and weakly orienting the rules
            {  active(if(false(), X, Y)) -> mark(Y)
             , active(if(true(), X, Y)) -> mark(X)
             , top^#(ok(X)) -> c_17(top^#(active(X)))
             , proper(c()) -> ok(c())
             , proper(true()) -> ok(true())
             , proper(false()) -> ok(false())
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(mark(X)) -> c_16(top^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [5]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8]
                  c() = [0]
                  true() = [8]
                  false() = [2]
                  proper(x1) = [1] x1 + [2]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [7]
                  c_16(x1) = [1] x1 + [0]
                  c_17(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> mark(if(X, c(), f(true())))
                 , active(f(X)) -> f(active(X))
                 , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                 , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                 , proper(f(X)) -> f(proper(X))
                 , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                 , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
              Weak Rules:
                {  top^#(mark(X)) -> c_16(top^#(proper(X)))
                 , active(if(false(), X, Y)) -> mark(Y)
                 , active(if(true(), X, Y)) -> mark(X)
                 , top^#(ok(X)) -> c_17(top^#(active(X)))
                 , proper(c()) -> ok(c())
                 , proper(true()) -> ok(true())
                 , proper(false()) -> ok(false())
                 , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> mark(if(X, c(), f(true())))
                   , active(f(X)) -> f(active(X))
                   , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                   , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                   , proper(f(X)) -> f(proper(X))
                   , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                   , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
                Weak Rules:
                  {  top^#(mark(X)) -> c_16(top^#(proper(X)))
                   , active(if(false(), X, Y)) -> mark(Y)
                   , active(if(true(), X, Y)) -> mark(X)
                   , top^#(ok(X)) -> c_17(top^#(active(X)))
                   , proper(c()) -> ok(c())
                   , proper(true()) -> ok(true())
                   , proper(false()) -> ok(false())
                   , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  active_0(2) -> 6
                 , mark_0(2) -> 2
                 , c_0() -> 2
                 , true_0() -> 2
                 , false_0() -> 2
                 , proper_0(2) -> 4
                 , ok_0(2) -> 2
                 , ok_0(2) -> 4
                 , top^#_0(2) -> 1
                 , top^#_0(4) -> 3
                 , top^#_0(6) -> 5
                 , c_16_0(3) -> 1
                 , c_17_0(5) -> 1
                 , c_17_0(5) -> 3}
      
   2) {  active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))
       , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
       , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
       , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
      
      The usable rules for this path are the following:
      {  active(f(X)) -> mark(if(X, c(), f(true())))
       , active(if(true(), X, Y)) -> mark(X)
       , active(if(false(), X, Y)) -> mark(Y)
       , active(f(X)) -> f(active(X))
       , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
       , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
       , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
       , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(X)) -> mark(if(X, c(), f(true())))
               , active(if(true(), X, Y)) -> mark(X)
               , active(if(false(), X, Y)) -> mark(Y)
               , active(f(X)) -> f(active(X))
               , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
               , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
               , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
               , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))
               , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
               , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
               , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
            and weakly orienting the rules
            {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
            and weakly orienting the rules
            {  if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
             , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
            and weakly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
             , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
             , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)}
            and weakly orienting the rules
            {  active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
             , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
             , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(if(true(), X, Y)) -> mark(X)
               , active(if(false(), X, Y)) -> mark(Y)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [4]
                  mark(x1) = [1] x1 + [5]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [6]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [14]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [2]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(X)) -> mark(if(X, c(), f(true())))}
            and weakly orienting the rules
            {  active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)
             , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
             , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
             , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(X)) -> mark(if(X, c(), f(true())))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [9]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [1]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                 , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                 , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
              Weak Rules:
                {  active(f(X)) -> mark(if(X, c(), f(true())))
                 , active(if(true(), X, Y)) -> mark(X)
                 , active(if(false(), X, Y)) -> mark(Y)
                 , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))
                 , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                 , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
                 , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
                 , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                   , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                   , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
                Weak Rules:
                  {  active(f(X)) -> mark(if(X, c(), f(true())))
                   , active(if(true(), X, Y)) -> mark(X)
                   , active(if(false(), X, Y)) -> mark(Y)
                   , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))
                   , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                   , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
                   , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
                   , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , c_0() -> 2
                 , true_0() -> 2
                 , false_0() -> 2
                 , ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , if^#_0(2, 2, 2) -> 1
                 , c_7_0(1) -> 1
                 , c_8_0(1) -> 1
                 , c_15_0(1) -> 1}
      
   3) {  active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))
       , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
       , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
       , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
      
      The usable rules for this path are the following:
      {  active(f(X)) -> mark(if(X, c(), f(true())))
       , active(if(true(), X, Y)) -> mark(X)
       , active(if(false(), X, Y)) -> mark(Y)
       , active(f(X)) -> f(active(X))
       , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
       , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
       , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
       , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(X)) -> mark(if(X, c(), f(true())))
               , active(if(true(), X, Y)) -> mark(X)
               , active(if(false(), X, Y)) -> mark(Y)
               , active(f(X)) -> f(active(X))
               , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
               , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
               , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
               , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))
               , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
               , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
               , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
            and weakly orienting the rules
            {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
            and weakly orienting the rules
            {  if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
             , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
            and weakly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
             , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
             , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)}
            and weakly orienting the rules
            {  active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
             , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
             , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(if(true(), X, Y)) -> mark(X)
               , active(if(false(), X, Y)) -> mark(Y)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [4]
                  mark(x1) = [1] x1 + [5]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [6]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [14]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [2]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(X)) -> mark(if(X, c(), f(true())))}
            and weakly orienting the rules
            {  active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)
             , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
             , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
             , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(X)) -> mark(if(X, c(), f(true())))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [9]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [1]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                 , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                 , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
              Weak Rules:
                {  active(f(X)) -> mark(if(X, c(), f(true())))
                 , active(if(true(), X, Y)) -> mark(X)
                 , active(if(false(), X, Y)) -> mark(Y)
                 , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))
                 , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                 , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
                 , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
                 , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                   , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                   , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
                Weak Rules:
                  {  active(f(X)) -> mark(if(X, c(), f(true())))
                   , active(if(true(), X, Y)) -> mark(X)
                   , active(if(false(), X, Y)) -> mark(Y)
                   , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))
                   , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                   , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
                   , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
                   , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , c_0() -> 2
                 , true_0() -> 2
                 , false_0() -> 2
                 , ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , if^#_0(2, 2, 2) -> 1
                 , c_7_0(1) -> 1
                 , c_8_0(1) -> 1
                 , c_15_0(1) -> 1}
      
   4) {  active^#(f(X)) -> c_3(f^#(active(X)))
       , f^#(ok(X)) -> c_14(f^#(X))
       , f^#(mark(X)) -> c_6(f^#(X))}
      
      The usable rules for this path are the following:
      {  active(f(X)) -> mark(if(X, c(), f(true())))
       , active(if(true(), X, Y)) -> mark(X)
       , active(if(false(), X, Y)) -> mark(Y)
       , active(f(X)) -> f(active(X))
       , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
       , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
       , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
       , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(X)) -> mark(if(X, c(), f(true())))
               , active(if(true(), X, Y)) -> mark(X)
               , active(if(false(), X, Y)) -> mark(Y)
               , active(f(X)) -> f(active(X))
               , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
               , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
               , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
               , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , active^#(f(X)) -> c_3(f^#(active(X)))
               , f^#(ok(X)) -> c_14(f^#(X))
               , f^#(mark(X)) -> c_6(f^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(if(true(), X, Y)) -> mark(X)
               , active(if(false(), X, Y)) -> mark(Y)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [1] x1 + [1]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , f^#(ok(X)) -> c_14(f^#(X))}
            and weakly orienting the rules
            {  active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , f^#(ok(X)) -> c_14(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [12]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [1] x1 + [1]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(mark(X)) -> c_6(f^#(X))}
            and weakly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , f^#(ok(X)) -> c_14(f^#(X))
             , active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(mark(X)) -> c_6(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(X)) -> c_3(f^#(active(X)))}
            and weakly orienting the rules
            {  f^#(mark(X)) -> c_6(f^#(X))
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , f^#(ok(X)) -> c_14(f^#(X))
             , active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(X)) -> c_3(f^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [3]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(X)) -> mark(if(X, c(), f(true())))}
            and weakly orienting the rules
            {  active^#(f(X)) -> c_3(f^#(active(X)))
             , f^#(mark(X)) -> c_6(f^#(X))
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , f^#(ok(X)) -> c_14(f^#(X))
             , active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(X)) -> mark(if(X, c(), f(true())))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [6]
                  f(x1) = [1] x1 + [10]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [1]
                  false() = [9]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [7]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [14]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [1] x1 + [5]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                 , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                 , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
              Weak Rules:
                {  active(f(X)) -> mark(if(X, c(), f(true())))
                 , active^#(f(X)) -> c_3(f^#(active(X)))
                 , f^#(mark(X)) -> c_6(f^#(X))
                 , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                 , f^#(ok(X)) -> c_14(f^#(X))
                 , active(if(true(), X, Y)) -> mark(X)
                 , active(if(false(), X, Y)) -> mark(Y)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                   , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                   , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
                Weak Rules:
                  {  active(f(X)) -> mark(if(X, c(), f(true())))
                   , active^#(f(X)) -> c_3(f^#(active(X)))
                   , f^#(mark(X)) -> c_6(f^#(X))
                   , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                   , f^#(ok(X)) -> c_14(f^#(X))
                   , active(if(true(), X, Y)) -> mark(X)
                   , active(if(false(), X, Y)) -> mark(Y)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(6) -> 3
                 , mark_0(7) -> 3
                 , mark_0(9) -> 3
                 , c_0() -> 5
                 , true_0() -> 6
                 , false_0() -> 7
                 , ok_0(3) -> 9
                 , ok_0(5) -> 9
                 , ok_0(6) -> 9
                 , ok_0(7) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(5) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(7) -> 11
                 , active^#_0(9) -> 11
                 , f^#_0(3) -> 17
                 , f^#_0(5) -> 17
                 , f^#_0(6) -> 17
                 , f^#_0(7) -> 17
                 , f^#_0(9) -> 17
                 , c_6_0(17) -> 17
                 , c_14_0(17) -> 17}
      
   5) {  proper^#(if(X1, X2, X3)) ->
         c_10(if^#(proper(X1), proper(X2), proper(X3)))
       , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
       , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
       , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
       , proper(c()) -> ok(c())
       , proper(true()) -> ok(true())
       , proper(false()) -> ok(false())
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
       , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
       , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
               , proper(c()) -> ok(c())
               , proper(true()) -> ok(true())
               , proper(false()) -> ok(false())
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
               , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
               , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , proper^#(if(X1, X2, X3)) ->
                 c_10(if^#(proper(X1), proper(X2), proper(X3)))
               , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
               , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
               , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
             , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
            and weakly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
               , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [4]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(if(X1, X2, X3)) ->
             c_10(if^#(proper(X1), proper(X2), proper(X3)))}
            and weakly orienting the rules
            {  if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
             , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(if(X1, X2, X3)) ->
               c_10(if^#(proper(X1), proper(X2), proper(X3)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(c()) -> ok(c())
             , proper(true()) -> ok(true())
             , proper(false()) -> ok(false())}
            and weakly orienting the rules
            {  proper^#(if(X1, X2, X3)) ->
               c_10(if^#(proper(X1), proper(X2), proper(X3)))
             , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
             , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(c()) -> ok(c())
               , proper(true()) -> ok(true())
               , proper(false()) -> ok(false())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [1]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [8]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                 , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
              Weak Rules:
                {  proper(c()) -> ok(c())
                 , proper(true()) -> ok(true())
                 , proper(false()) -> ok(false())
                 , proper^#(if(X1, X2, X3)) ->
                   c_10(if^#(proper(X1), proper(X2), proper(X3)))
                 , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
                 , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
                 , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                 , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                   , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
                Weak Rules:
                  {  proper(c()) -> ok(c())
                   , proper(true()) -> ok(true())
                   , proper(false()) -> ok(false())
                   , proper^#(if(X1, X2, X3)) ->
                     c_10(if^#(proper(X1), proper(X2), proper(X3)))
                   , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
                   , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))
                   , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                   , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , c_0() -> 2
                 , true_0() -> 2
                 , false_0() -> 2
                 , ok_0(2) -> 2
                 , if^#_0(2, 2, 2) -> 1
                 , c_7_0(1) -> 1
                 , c_8_0(1) -> 1
                 , proper^#_0(2) -> 1
                 , c_15_0(1) -> 1}
      
   6) {  proper^#(f(X)) -> c_9(f^#(proper(X)))
       , f^#(ok(X)) -> c_14(f^#(X))
       , f^#(mark(X)) -> c_6(f^#(X))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
       , proper(c()) -> ok(c())
       , proper(true()) -> ok(true())
       , proper(false()) -> ok(false())
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
       , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
       , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
               , proper(c()) -> ok(c())
               , proper(true()) -> ok(true())
               , proper(false()) -> ok(false())
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
               , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
               , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , proper^#(f(X)) -> c_9(f^#(proper(X)))
               , f^#(ok(X)) -> c_14(f^#(X))
               , f^#(mark(X)) -> c_6(f^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  proper(c()) -> ok(c())
             , proper(true()) -> ok(true())
             , proper(false()) -> ok(false())}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(c()) -> ok(c())
               , proper(true()) -> ok(true())
               , proper(false()) -> ok(false())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [1] x1 + [1]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(f(X)) -> c_9(f^#(proper(X)))}
            and weakly orienting the rules
            {  proper(c()) -> ok(c())
             , proper(true()) -> ok(true())
             , proper(false()) -> ok(false())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(f(X)) -> c_9(f^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [8]
                  true() = [0]
                  false() = [3]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [2]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [9]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [1] x1 + [9]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , f^#(mark(X)) -> c_6(f^#(X))}
            and weakly orienting the rules
            {  proper^#(f(X)) -> c_9(f^#(proper(X)))
             , proper(c()) -> ok(c())
             , proper(true()) -> ok(true())
             , proper(false()) -> ok(false())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , f^#(mark(X)) -> c_6(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [10]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                  c() = [5]
                  true() = [8]
                  false() = [5]
                  proper(x1) = [1] x1 + [9]
                  ok(x1) = [1] x1 + [6]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [2]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [1] x1 + [9]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(ok(X)) -> c_14(f^#(X))}
            and weakly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , f^#(mark(X)) -> c_6(f^#(X))
             , proper^#(f(X)) -> c_9(f^#(proper(X)))
             , proper(c()) -> ok(c())
             , proper(true()) -> ok(true())
             , proper(false()) -> ok(false())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(ok(X)) -> c_14(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [4]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [7]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                 , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
              Weak Rules:
                {  f^#(ok(X)) -> c_14(f^#(X))
                 , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                 , f^#(mark(X)) -> c_6(f^#(X))
                 , proper^#(f(X)) -> c_9(f^#(proper(X)))
                 , proper(c()) -> ok(c())
                 , proper(true()) -> ok(true())
                 , proper(false()) -> ok(false())}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                   , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
                Weak Rules:
                  {  f^#(ok(X)) -> c_14(f^#(X))
                   , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                   , f^#(mark(X)) -> c_6(f^#(X))
                   , proper^#(f(X)) -> c_9(f^#(proper(X)))
                   , proper(c()) -> ok(c())
                   , proper(true()) -> ok(true())
                   , proper(false()) -> ok(false())}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(6) -> 3
                 , mark_0(7) -> 3
                 , mark_0(9) -> 3
                 , c_0() -> 5
                 , true_0() -> 6
                 , false_0() -> 7
                 , ok_0(3) -> 9
                 , ok_0(5) -> 9
                 , ok_0(6) -> 9
                 , ok_0(7) -> 9
                 , ok_0(9) -> 9
                 , f^#_0(3) -> 17
                 , f^#_0(5) -> 17
                 , f^#_0(6) -> 17
                 , f^#_0(7) -> 17
                 , f^#_0(9) -> 17
                 , c_6_0(17) -> 17
                 , proper^#_0(3) -> 23
                 , proper^#_0(5) -> 23
                 , proper^#_0(6) -> 23
                 , proper^#_0(7) -> 23
                 , proper^#_0(9) -> 23
                 , c_14_0(17) -> 17}
      
   7) {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
      
      The usable rules for this path are the following:
      {  active(f(X)) -> mark(if(X, c(), f(true())))
       , active(if(true(), X, Y)) -> mark(X)
       , active(if(false(), X, Y)) -> mark(Y)
       , active(f(X)) -> f(active(X))
       , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
       , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
       , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
       , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(X)) -> mark(if(X, c(), f(true())))
               , active(if(true(), X, Y)) -> mark(X)
               , active(if(false(), X, Y)) -> mark(Y)
               , active(f(X)) -> f(active(X))
               , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
               , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
               , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
               , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            and weakly orienting the rules
            {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [4]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)}
            and weakly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(if(true(), X, Y)) -> mark(X)
               , active(if(false(), X, Y)) -> mark(Y)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [15]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(X)) -> mark(if(X, c(), f(true())))}
            and weakly orienting the rules
            {  active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(X)) -> mark(if(X, c(), f(true())))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [5]
                  f(x1) = [1] x1 + [4]
                  mark(x1) = [1] x1 + [4]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [12]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                 , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                 , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
              Weak Rules:
                {  active(f(X)) -> mark(if(X, c(), f(true())))
                 , active(if(true(), X, Y)) -> mark(X)
                 , active(if(false(), X, Y)) -> mark(Y)
                 , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                 , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                   , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                   , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
                Weak Rules:
                  {  active(f(X)) -> mark(if(X, c(), f(true())))
                   , active(if(true(), X, Y)) -> mark(X)
                   , active(if(false(), X, Y)) -> mark(Y)
                   , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                   , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(6) -> 3
                 , mark_0(7) -> 3
                 , mark_0(9) -> 3
                 , c_0() -> 5
                 , true_0() -> 6
                 , false_0() -> 7
                 , ok_0(3) -> 9
                 , ok_0(5) -> 9
                 , ok_0(6) -> 9
                 , ok_0(7) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(5) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(7) -> 11
                 , active^#_0(9) -> 11
                 , if^#_0(3, 3, 3) -> 13
                 , if^#_0(3, 3, 5) -> 13
                 , if^#_0(3, 3, 6) -> 13
                 , if^#_0(3, 3, 7) -> 13
                 , if^#_0(3, 3, 9) -> 13
                 , if^#_0(3, 5, 3) -> 13
                 , if^#_0(3, 5, 5) -> 13
                 , if^#_0(3, 5, 6) -> 13
                 , if^#_0(3, 5, 7) -> 13
                 , if^#_0(3, 5, 9) -> 13
                 , if^#_0(3, 6, 3) -> 13
                 , if^#_0(3, 6, 5) -> 13
                 , if^#_0(3, 6, 6) -> 13
                 , if^#_0(3, 6, 7) -> 13
                 , if^#_0(3, 6, 9) -> 13
                 , if^#_0(3, 7, 3) -> 13
                 , if^#_0(3, 7, 5) -> 13
                 , if^#_0(3, 7, 6) -> 13
                 , if^#_0(3, 7, 7) -> 13
                 , if^#_0(3, 7, 9) -> 13
                 , if^#_0(3, 9, 3) -> 13
                 , if^#_0(3, 9, 5) -> 13
                 , if^#_0(3, 9, 6) -> 13
                 , if^#_0(3, 9, 7) -> 13
                 , if^#_0(3, 9, 9) -> 13
                 , if^#_0(5, 3, 3) -> 13
                 , if^#_0(5, 3, 5) -> 13
                 , if^#_0(5, 3, 6) -> 13
                 , if^#_0(5, 3, 7) -> 13
                 , if^#_0(5, 3, 9) -> 13
                 , if^#_0(5, 5, 3) -> 13
                 , if^#_0(5, 5, 5) -> 13
                 , if^#_0(5, 5, 6) -> 13
                 , if^#_0(5, 5, 7) -> 13
                 , if^#_0(5, 5, 9) -> 13
                 , if^#_0(5, 6, 3) -> 13
                 , if^#_0(5, 6, 5) -> 13
                 , if^#_0(5, 6, 6) -> 13
                 , if^#_0(5, 6, 7) -> 13
                 , if^#_0(5, 6, 9) -> 13
                 , if^#_0(5, 7, 3) -> 13
                 , if^#_0(5, 7, 5) -> 13
                 , if^#_0(5, 7, 6) -> 13
                 , if^#_0(5, 7, 7) -> 13
                 , if^#_0(5, 7, 9) -> 13
                 , if^#_0(5, 9, 3) -> 13
                 , if^#_0(5, 9, 5) -> 13
                 , if^#_0(5, 9, 6) -> 13
                 , if^#_0(5, 9, 7) -> 13
                 , if^#_0(5, 9, 9) -> 13
                 , if^#_0(6, 3, 3) -> 13
                 , if^#_0(6, 3, 5) -> 13
                 , if^#_0(6, 3, 6) -> 13
                 , if^#_0(6, 3, 7) -> 13
                 , if^#_0(6, 3, 9) -> 13
                 , if^#_0(6, 5, 3) -> 13
                 , if^#_0(6, 5, 5) -> 13
                 , if^#_0(6, 5, 6) -> 13
                 , if^#_0(6, 5, 7) -> 13
                 , if^#_0(6, 5, 9) -> 13
                 , if^#_0(6, 6, 3) -> 13
                 , if^#_0(6, 6, 5) -> 13
                 , if^#_0(6, 6, 6) -> 13
                 , if^#_0(6, 6, 7) -> 13
                 , if^#_0(6, 6, 9) -> 13
                 , if^#_0(6, 7, 3) -> 13
                 , if^#_0(6, 7, 5) -> 13
                 , if^#_0(6, 7, 6) -> 13
                 , if^#_0(6, 7, 7) -> 13
                 , if^#_0(6, 7, 9) -> 13
                 , if^#_0(6, 9, 3) -> 13
                 , if^#_0(6, 9, 5) -> 13
                 , if^#_0(6, 9, 6) -> 13
                 , if^#_0(6, 9, 7) -> 13
                 , if^#_0(6, 9, 9) -> 13
                 , if^#_0(7, 3, 3) -> 13
                 , if^#_0(7, 3, 5) -> 13
                 , if^#_0(7, 3, 6) -> 13
                 , if^#_0(7, 3, 7) -> 13
                 , if^#_0(7, 3, 9) -> 13
                 , if^#_0(7, 5, 3) -> 13
                 , if^#_0(7, 5, 5) -> 13
                 , if^#_0(7, 5, 6) -> 13
                 , if^#_0(7, 5, 7) -> 13
                 , if^#_0(7, 5, 9) -> 13
                 , if^#_0(7, 6, 3) -> 13
                 , if^#_0(7, 6, 5) -> 13
                 , if^#_0(7, 6, 6) -> 13
                 , if^#_0(7, 6, 7) -> 13
                 , if^#_0(7, 6, 9) -> 13
                 , if^#_0(7, 7, 3) -> 13
                 , if^#_0(7, 7, 5) -> 13
                 , if^#_0(7, 7, 6) -> 13
                 , if^#_0(7, 7, 7) -> 13
                 , if^#_0(7, 7, 9) -> 13
                 , if^#_0(7, 9, 3) -> 13
                 , if^#_0(7, 9, 5) -> 13
                 , if^#_0(7, 9, 6) -> 13
                 , if^#_0(7, 9, 7) -> 13
                 , if^#_0(7, 9, 9) -> 13
                 , if^#_0(9, 3, 3) -> 13
                 , if^#_0(9, 3, 5) -> 13
                 , if^#_0(9, 3, 6) -> 13
                 , if^#_0(9, 3, 7) -> 13
                 , if^#_0(9, 3, 9) -> 13
                 , if^#_0(9, 5, 3) -> 13
                 , if^#_0(9, 5, 5) -> 13
                 , if^#_0(9, 5, 6) -> 13
                 , if^#_0(9, 5, 7) -> 13
                 , if^#_0(9, 5, 9) -> 13
                 , if^#_0(9, 6, 3) -> 13
                 , if^#_0(9, 6, 5) -> 13
                 , if^#_0(9, 6, 6) -> 13
                 , if^#_0(9, 6, 7) -> 13
                 , if^#_0(9, 6, 9) -> 13
                 , if^#_0(9, 7, 3) -> 13
                 , if^#_0(9, 7, 5) -> 13
                 , if^#_0(9, 7, 6) -> 13
                 , if^#_0(9, 7, 7) -> 13
                 , if^#_0(9, 7, 9) -> 13
                 , if^#_0(9, 9, 3) -> 13
                 , if^#_0(9, 9, 5) -> 13
                 , if^#_0(9, 9, 6) -> 13
                 , if^#_0(9, 9, 7) -> 13
                 , if^#_0(9, 9, 9) -> 13}
      
   8) {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
      
      The usable rules for this path are the following:
      {  active(f(X)) -> mark(if(X, c(), f(true())))
       , active(if(true(), X, Y)) -> mark(X)
       , active(if(false(), X, Y)) -> mark(Y)
       , active(f(X)) -> f(active(X))
       , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
       , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
       , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
       , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(X)) -> mark(if(X, c(), f(true())))
               , active(if(true(), X, Y)) -> mark(X)
               , active(if(false(), X, Y)) -> mark(Y)
               , active(f(X)) -> f(active(X))
               , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
               , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
               , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
               , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            and weakly orienting the rules
            {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [4]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)}
            and weakly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(if(true(), X, Y)) -> mark(X)
               , active(if(false(), X, Y)) -> mark(Y)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [15]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(X)) -> mark(if(X, c(), f(true())))}
            and weakly orienting the rules
            {  active(if(true(), X, Y)) -> mark(X)
             , active(if(false(), X, Y)) -> mark(Y)
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(X)) -> mark(if(X, c(), f(true())))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [5]
                  f(x1) = [1] x1 + [4]
                  mark(x1) = [1] x1 + [4]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [12]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                 , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                 , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
              Weak Rules:
                {  active(f(X)) -> mark(if(X, c(), f(true())))
                 , active(if(true(), X, Y)) -> mark(X)
                 , active(if(false(), X, Y)) -> mark(Y)
                 , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                 , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                   , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                   , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
                Weak Rules:
                  {  active(f(X)) -> mark(if(X, c(), f(true())))
                   , active(if(true(), X, Y)) -> mark(X)
                   , active(if(false(), X, Y)) -> mark(Y)
                   , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                   , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(6) -> 3
                 , mark_0(7) -> 3
                 , mark_0(9) -> 3
                 , c_0() -> 5
                 , true_0() -> 6
                 , false_0() -> 7
                 , ok_0(3) -> 9
                 , ok_0(5) -> 9
                 , ok_0(6) -> 9
                 , ok_0(7) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(5) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(7) -> 11
                 , active^#_0(9) -> 11
                 , if^#_0(3, 3, 3) -> 13
                 , if^#_0(3, 3, 5) -> 13
                 , if^#_0(3, 3, 6) -> 13
                 , if^#_0(3, 3, 7) -> 13
                 , if^#_0(3, 3, 9) -> 13
                 , if^#_0(3, 5, 3) -> 13
                 , if^#_0(3, 5, 5) -> 13
                 , if^#_0(3, 5, 6) -> 13
                 , if^#_0(3, 5, 7) -> 13
                 , if^#_0(3, 5, 9) -> 13
                 , if^#_0(3, 6, 3) -> 13
                 , if^#_0(3, 6, 5) -> 13
                 , if^#_0(3, 6, 6) -> 13
                 , if^#_0(3, 6, 7) -> 13
                 , if^#_0(3, 6, 9) -> 13
                 , if^#_0(3, 7, 3) -> 13
                 , if^#_0(3, 7, 5) -> 13
                 , if^#_0(3, 7, 6) -> 13
                 , if^#_0(3, 7, 7) -> 13
                 , if^#_0(3, 7, 9) -> 13
                 , if^#_0(3, 9, 3) -> 13
                 , if^#_0(3, 9, 5) -> 13
                 , if^#_0(3, 9, 6) -> 13
                 , if^#_0(3, 9, 7) -> 13
                 , if^#_0(3, 9, 9) -> 13
                 , if^#_0(5, 3, 3) -> 13
                 , if^#_0(5, 3, 5) -> 13
                 , if^#_0(5, 3, 6) -> 13
                 , if^#_0(5, 3, 7) -> 13
                 , if^#_0(5, 3, 9) -> 13
                 , if^#_0(5, 5, 3) -> 13
                 , if^#_0(5, 5, 5) -> 13
                 , if^#_0(5, 5, 6) -> 13
                 , if^#_0(5, 5, 7) -> 13
                 , if^#_0(5, 5, 9) -> 13
                 , if^#_0(5, 6, 3) -> 13
                 , if^#_0(5, 6, 5) -> 13
                 , if^#_0(5, 6, 6) -> 13
                 , if^#_0(5, 6, 7) -> 13
                 , if^#_0(5, 6, 9) -> 13
                 , if^#_0(5, 7, 3) -> 13
                 , if^#_0(5, 7, 5) -> 13
                 , if^#_0(5, 7, 6) -> 13
                 , if^#_0(5, 7, 7) -> 13
                 , if^#_0(5, 7, 9) -> 13
                 , if^#_0(5, 9, 3) -> 13
                 , if^#_0(5, 9, 5) -> 13
                 , if^#_0(5, 9, 6) -> 13
                 , if^#_0(5, 9, 7) -> 13
                 , if^#_0(5, 9, 9) -> 13
                 , if^#_0(6, 3, 3) -> 13
                 , if^#_0(6, 3, 5) -> 13
                 , if^#_0(6, 3, 6) -> 13
                 , if^#_0(6, 3, 7) -> 13
                 , if^#_0(6, 3, 9) -> 13
                 , if^#_0(6, 5, 3) -> 13
                 , if^#_0(6, 5, 5) -> 13
                 , if^#_0(6, 5, 6) -> 13
                 , if^#_0(6, 5, 7) -> 13
                 , if^#_0(6, 5, 9) -> 13
                 , if^#_0(6, 6, 3) -> 13
                 , if^#_0(6, 6, 5) -> 13
                 , if^#_0(6, 6, 6) -> 13
                 , if^#_0(6, 6, 7) -> 13
                 , if^#_0(6, 6, 9) -> 13
                 , if^#_0(6, 7, 3) -> 13
                 , if^#_0(6, 7, 5) -> 13
                 , if^#_0(6, 7, 6) -> 13
                 , if^#_0(6, 7, 7) -> 13
                 , if^#_0(6, 7, 9) -> 13
                 , if^#_0(6, 9, 3) -> 13
                 , if^#_0(6, 9, 5) -> 13
                 , if^#_0(6, 9, 6) -> 13
                 , if^#_0(6, 9, 7) -> 13
                 , if^#_0(6, 9, 9) -> 13
                 , if^#_0(7, 3, 3) -> 13
                 , if^#_0(7, 3, 5) -> 13
                 , if^#_0(7, 3, 6) -> 13
                 , if^#_0(7, 3, 7) -> 13
                 , if^#_0(7, 3, 9) -> 13
                 , if^#_0(7, 5, 3) -> 13
                 , if^#_0(7, 5, 5) -> 13
                 , if^#_0(7, 5, 6) -> 13
                 , if^#_0(7, 5, 7) -> 13
                 , if^#_0(7, 5, 9) -> 13
                 , if^#_0(7, 6, 3) -> 13
                 , if^#_0(7, 6, 5) -> 13
                 , if^#_0(7, 6, 6) -> 13
                 , if^#_0(7, 6, 7) -> 13
                 , if^#_0(7, 6, 9) -> 13
                 , if^#_0(7, 7, 3) -> 13
                 , if^#_0(7, 7, 5) -> 13
                 , if^#_0(7, 7, 6) -> 13
                 , if^#_0(7, 7, 7) -> 13
                 , if^#_0(7, 7, 9) -> 13
                 , if^#_0(7, 9, 3) -> 13
                 , if^#_0(7, 9, 5) -> 13
                 , if^#_0(7, 9, 6) -> 13
                 , if^#_0(7, 9, 7) -> 13
                 , if^#_0(7, 9, 9) -> 13
                 , if^#_0(9, 3, 3) -> 13
                 , if^#_0(9, 3, 5) -> 13
                 , if^#_0(9, 3, 6) -> 13
                 , if^#_0(9, 3, 7) -> 13
                 , if^#_0(9, 3, 9) -> 13
                 , if^#_0(9, 5, 3) -> 13
                 , if^#_0(9, 5, 5) -> 13
                 , if^#_0(9, 5, 6) -> 13
                 , if^#_0(9, 5, 7) -> 13
                 , if^#_0(9, 5, 9) -> 13
                 , if^#_0(9, 6, 3) -> 13
                 , if^#_0(9, 6, 5) -> 13
                 , if^#_0(9, 6, 6) -> 13
                 , if^#_0(9, 6, 7) -> 13
                 , if^#_0(9, 6, 9) -> 13
                 , if^#_0(9, 7, 3) -> 13
                 , if^#_0(9, 7, 5) -> 13
                 , if^#_0(9, 7, 6) -> 13
                 , if^#_0(9, 7, 7) -> 13
                 , if^#_0(9, 7, 9) -> 13
                 , if^#_0(9, 9, 3) -> 13
                 , if^#_0(9, 9, 5) -> 13
                 , if^#_0(9, 9, 6) -> 13
                 , if^#_0(9, 9, 7) -> 13
                 , if^#_0(9, 9, 9) -> 13}
      
   9) {active^#(f(X)) -> c_3(f^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(f(X)) -> mark(if(X, c(), f(true())))
       , active(if(true(), X, Y)) -> mark(X)
       , active(if(false(), X, Y)) -> mark(Y)
       , active(f(X)) -> f(active(X))
       , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
       , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
       , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
       , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(X)) -> mark(if(X, c(), f(true())))
               , active(if(true(), X, Y)) -> mark(X)
               , active(if(false(), X, Y)) -> mark(Y)
               , active(f(X)) -> f(active(X))
               , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
               , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
               , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
               , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , active^#(f(X)) -> c_3(f^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(X)) -> c_3(f^#(active(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(X)) -> c_3(f^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            and weakly orienting the rules
            {active^#(f(X)) -> c_3(f^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [8]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(if(false(), X, Y)) -> mark(Y)}
            and weakly orienting the rules
            {  if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , active^#(f(X)) -> c_3(f^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(if(false(), X, Y)) -> mark(Y)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [12]
                  mark(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [8]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [3]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [4]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(f(X)) -> mark(if(X, c(), f(true())))
             , active(if(true(), X, Y)) -> mark(X)}
            and weakly orienting the rules
            {  active(if(false(), X, Y)) -> mark(Y)
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
             , active^#(f(X)) -> c_3(f^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(f(X)) -> mark(if(X, c(), f(true())))
               , active(if(true(), X, Y)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                 , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                 , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
              Weak Rules:
                {  active(f(X)) -> mark(if(X, c(), f(true())))
                 , active(if(true(), X, Y)) -> mark(X)
                 , active(if(false(), X, Y)) -> mark(Y)
                 , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                 , active^#(f(X)) -> c_3(f^#(active(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
                   , active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                   , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
                Weak Rules:
                  {  active(f(X)) -> mark(if(X, c(), f(true())))
                   , active(if(true(), X, Y)) -> mark(X)
                   , active(if(false(), X, Y)) -> mark(Y)
                   , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
                   , active^#(f(X)) -> c_3(f^#(active(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(6) -> 3
                 , mark_0(7) -> 3
                 , mark_0(9) -> 3
                 , c_0() -> 5
                 , true_0() -> 6
                 , false_0() -> 7
                 , ok_0(3) -> 9
                 , ok_0(5) -> 9
                 , ok_0(6) -> 9
                 , ok_0(7) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(5) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(7) -> 11
                 , active^#_0(9) -> 11
                 , f^#_0(3) -> 17
                 , f^#_0(5) -> 17
                 , f^#_0(6) -> 17
                 , f^#_0(7) -> 17
                 , f^#_0(9) -> 17}
      
   10)
      {proper^#(if(X1, X2, X3)) ->
       c_10(if^#(proper(X1), proper(X2), proper(X3)))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
       , proper(c()) -> ok(c())
       , proper(true()) -> ok(true())
       , proper(false()) -> ok(false())
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
       , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
       , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
               , proper(c()) -> ok(c())
               , proper(true()) -> ok(true())
               , proper(false()) -> ok(false())
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
               , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
               , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , proper^#(if(X1, X2, X3)) ->
                 c_10(if^#(proper(X1), proper(X2), proper(X3)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [4]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(if(X1, X2, X3)) ->
             c_10(if^#(proper(X1), proper(X2), proper(X3)))}
            and weakly orienting the rules
            {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(if(X1, X2, X3)) ->
               c_10(if^#(proper(X1), proper(X2), proper(X3)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [4]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(c()) -> ok(c())
             , proper(true()) -> ok(true())
             , proper(false()) -> ok(false())}
            and weakly orienting the rules
            {  proper^#(if(X1, X2, X3)) ->
               c_10(if^#(proper(X1), proper(X2), proper(X3)))
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(c()) -> ok(c())
               , proper(true()) -> ok(true())
               , proper(false()) -> ok(false())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [15]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                 , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
              Weak Rules:
                {  proper(c()) -> ok(c())
                 , proper(true()) -> ok(true())
                 , proper(false()) -> ok(false())
                 , proper^#(if(X1, X2, X3)) ->
                   c_10(if^#(proper(X1), proper(X2), proper(X3)))
                 , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                   , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
                Weak Rules:
                  {  proper(c()) -> ok(c())
                   , proper(true()) -> ok(true())
                   , proper(false()) -> ok(false())
                   , proper^#(if(X1, X2, X3)) ->
                     c_10(if^#(proper(X1), proper(X2), proper(X3)))
                   , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(6) -> 3
                 , mark_0(7) -> 3
                 , mark_0(9) -> 3
                 , c_0() -> 5
                 , true_0() -> 6
                 , false_0() -> 7
                 , ok_0(3) -> 9
                 , ok_0(5) -> 9
                 , ok_0(6) -> 9
                 , ok_0(7) -> 9
                 , ok_0(9) -> 9
                 , if^#_0(3, 3, 3) -> 13
                 , if^#_0(3, 3, 5) -> 13
                 , if^#_0(3, 3, 6) -> 13
                 , if^#_0(3, 3, 7) -> 13
                 , if^#_0(3, 3, 9) -> 13
                 , if^#_0(3, 5, 3) -> 13
                 , if^#_0(3, 5, 5) -> 13
                 , if^#_0(3, 5, 6) -> 13
                 , if^#_0(3, 5, 7) -> 13
                 , if^#_0(3, 5, 9) -> 13
                 , if^#_0(3, 6, 3) -> 13
                 , if^#_0(3, 6, 5) -> 13
                 , if^#_0(3, 6, 6) -> 13
                 , if^#_0(3, 6, 7) -> 13
                 , if^#_0(3, 6, 9) -> 13
                 , if^#_0(3, 7, 3) -> 13
                 , if^#_0(3, 7, 5) -> 13
                 , if^#_0(3, 7, 6) -> 13
                 , if^#_0(3, 7, 7) -> 13
                 , if^#_0(3, 7, 9) -> 13
                 , if^#_0(3, 9, 3) -> 13
                 , if^#_0(3, 9, 5) -> 13
                 , if^#_0(3, 9, 6) -> 13
                 , if^#_0(3, 9, 7) -> 13
                 , if^#_0(3, 9, 9) -> 13
                 , if^#_0(5, 3, 3) -> 13
                 , if^#_0(5, 3, 5) -> 13
                 , if^#_0(5, 3, 6) -> 13
                 , if^#_0(5, 3, 7) -> 13
                 , if^#_0(5, 3, 9) -> 13
                 , if^#_0(5, 5, 3) -> 13
                 , if^#_0(5, 5, 5) -> 13
                 , if^#_0(5, 5, 6) -> 13
                 , if^#_0(5, 5, 7) -> 13
                 , if^#_0(5, 5, 9) -> 13
                 , if^#_0(5, 6, 3) -> 13
                 , if^#_0(5, 6, 5) -> 13
                 , if^#_0(5, 6, 6) -> 13
                 , if^#_0(5, 6, 7) -> 13
                 , if^#_0(5, 6, 9) -> 13
                 , if^#_0(5, 7, 3) -> 13
                 , if^#_0(5, 7, 5) -> 13
                 , if^#_0(5, 7, 6) -> 13
                 , if^#_0(5, 7, 7) -> 13
                 , if^#_0(5, 7, 9) -> 13
                 , if^#_0(5, 9, 3) -> 13
                 , if^#_0(5, 9, 5) -> 13
                 , if^#_0(5, 9, 6) -> 13
                 , if^#_0(5, 9, 7) -> 13
                 , if^#_0(5, 9, 9) -> 13
                 , if^#_0(6, 3, 3) -> 13
                 , if^#_0(6, 3, 5) -> 13
                 , if^#_0(6, 3, 6) -> 13
                 , if^#_0(6, 3, 7) -> 13
                 , if^#_0(6, 3, 9) -> 13
                 , if^#_0(6, 5, 3) -> 13
                 , if^#_0(6, 5, 5) -> 13
                 , if^#_0(6, 5, 6) -> 13
                 , if^#_0(6, 5, 7) -> 13
                 , if^#_0(6, 5, 9) -> 13
                 , if^#_0(6, 6, 3) -> 13
                 , if^#_0(6, 6, 5) -> 13
                 , if^#_0(6, 6, 6) -> 13
                 , if^#_0(6, 6, 7) -> 13
                 , if^#_0(6, 6, 9) -> 13
                 , if^#_0(6, 7, 3) -> 13
                 , if^#_0(6, 7, 5) -> 13
                 , if^#_0(6, 7, 6) -> 13
                 , if^#_0(6, 7, 7) -> 13
                 , if^#_0(6, 7, 9) -> 13
                 , if^#_0(6, 9, 3) -> 13
                 , if^#_0(6, 9, 5) -> 13
                 , if^#_0(6, 9, 6) -> 13
                 , if^#_0(6, 9, 7) -> 13
                 , if^#_0(6, 9, 9) -> 13
                 , if^#_0(7, 3, 3) -> 13
                 , if^#_0(7, 3, 5) -> 13
                 , if^#_0(7, 3, 6) -> 13
                 , if^#_0(7, 3, 7) -> 13
                 , if^#_0(7, 3, 9) -> 13
                 , if^#_0(7, 5, 3) -> 13
                 , if^#_0(7, 5, 5) -> 13
                 , if^#_0(7, 5, 6) -> 13
                 , if^#_0(7, 5, 7) -> 13
                 , if^#_0(7, 5, 9) -> 13
                 , if^#_0(7, 6, 3) -> 13
                 , if^#_0(7, 6, 5) -> 13
                 , if^#_0(7, 6, 6) -> 13
                 , if^#_0(7, 6, 7) -> 13
                 , if^#_0(7, 6, 9) -> 13
                 , if^#_0(7, 7, 3) -> 13
                 , if^#_0(7, 7, 5) -> 13
                 , if^#_0(7, 7, 6) -> 13
                 , if^#_0(7, 7, 7) -> 13
                 , if^#_0(7, 7, 9) -> 13
                 , if^#_0(7, 9, 3) -> 13
                 , if^#_0(7, 9, 5) -> 13
                 , if^#_0(7, 9, 6) -> 13
                 , if^#_0(7, 9, 7) -> 13
                 , if^#_0(7, 9, 9) -> 13
                 , if^#_0(9, 3, 3) -> 13
                 , if^#_0(9, 3, 5) -> 13
                 , if^#_0(9, 3, 6) -> 13
                 , if^#_0(9, 3, 7) -> 13
                 , if^#_0(9, 3, 9) -> 13
                 , if^#_0(9, 5, 3) -> 13
                 , if^#_0(9, 5, 5) -> 13
                 , if^#_0(9, 5, 6) -> 13
                 , if^#_0(9, 5, 7) -> 13
                 , if^#_0(9, 5, 9) -> 13
                 , if^#_0(9, 6, 3) -> 13
                 , if^#_0(9, 6, 5) -> 13
                 , if^#_0(9, 6, 6) -> 13
                 , if^#_0(9, 6, 7) -> 13
                 , if^#_0(9, 6, 9) -> 13
                 , if^#_0(9, 7, 3) -> 13
                 , if^#_0(9, 7, 5) -> 13
                 , if^#_0(9, 7, 6) -> 13
                 , if^#_0(9, 7, 7) -> 13
                 , if^#_0(9, 7, 9) -> 13
                 , if^#_0(9, 9, 3) -> 13
                 , if^#_0(9, 9, 5) -> 13
                 , if^#_0(9, 9, 6) -> 13
                 , if^#_0(9, 9, 7) -> 13
                 , if^#_0(9, 9, 9) -> 13
                 , proper^#_0(3) -> 23
                 , proper^#_0(5) -> 23
                 , proper^#_0(6) -> 23
                 , proper^#_0(7) -> 23
                 , proper^#_0(9) -> 23}
      
   11)
      {proper^#(f(X)) -> c_9(f^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
       , proper(c()) -> ok(c())
       , proper(true()) -> ok(true())
       , proper(false()) -> ok(false())
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
       , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
       , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
               , proper(c()) -> ok(c())
               , proper(true()) -> ok(true())
               , proper(false()) -> ok(false())
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
               , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
               , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
               , proper^#(f(X)) -> c_9(f^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [4]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [9]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(f(X)) -> c_9(f^#(proper(X)))}
            and weakly orienting the rules
            {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(f(X)) -> c_9(f^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(c()) -> ok(c())
             , proper(true()) -> ok(true())
             , proper(false()) -> ok(false())}
            and weakly orienting the rules
            {  proper^#(f(X)) -> c_9(f^#(proper(X)))
             , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(c()) -> ok(c())
               , proper(true()) -> ok(true())
               , proper(false()) -> ok(false())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [15]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [4]
                  c_9(x1) = [1] x1 + [2]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                 , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
              Weak Rules:
                {  proper(c()) -> ok(c())
                 , proper(true()) -> ok(true())
                 , proper(false()) -> ok(false())
                 , proper^#(f(X)) -> c_9(f^#(proper(X)))
                 , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
                   , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))}
                Weak Rules:
                  {  proper(c()) -> ok(c())
                   , proper(true()) -> ok(true())
                   , proper(false()) -> ok(false())
                   , proper^#(f(X)) -> c_9(f^#(proper(X)))
                   , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(6) -> 3
                 , mark_0(7) -> 3
                 , mark_0(9) -> 3
                 , c_0() -> 5
                 , true_0() -> 6
                 , false_0() -> 7
                 , ok_0(3) -> 9
                 , ok_0(5) -> 9
                 , ok_0(6) -> 9
                 , ok_0(7) -> 9
                 , ok_0(9) -> 9
                 , f^#_0(3) -> 17
                 , f^#_0(5) -> 17
                 , f^#_0(6) -> 17
                 , f^#_0(7) -> 17
                 , f^#_0(9) -> 17
                 , proper^#_0(3) -> 23
                 , proper^#_0(5) -> 23
                 , proper^#_0(6) -> 23
                 , proper^#_0(7) -> 23
                 , proper^#_0(9) -> 23}
      
   12)
      {  active^#(f(X)) -> c_0(if^#(X, c(), f(true())))
       , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
       , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
       , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
      
      The usable rules for this path are the following:
      {  f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , active^#(f(X)) -> c_0(if^#(X, c(), f(true())))
               , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
               , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
               , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active^#(f(X)) -> c_0(if^#(X, c(), f(true())))
             , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
             , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
             , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active^#(f(X)) -> c_0(if^#(X, c(), f(true())))
               , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
               , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
               , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [2]
                  if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c() = [2]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [3]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))}
              Weak Rules:
                {  active^#(f(X)) -> c_0(if^#(X, c(), f(true())))
                 , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
                 , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
                 , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))}
                Weak Rules:
                  {  active^#(f(X)) -> c_0(if^#(X, c(), f(true())))
                   , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))
                   , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))
                   , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , c_0() -> 2
                 , true_0() -> 2
                 , ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , if^#_0(2, 2, 2) -> 1
                 , c_7_0(1) -> 1
                 , c_8_0(1) -> 1
                 , c_15_0(1) -> 1}
      
   13)
      {active^#(f(X)) -> c_0(if^#(X, c(), f(true())))}
      
      The usable rules for this path are the following:
      {  f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , active^#(f(X)) -> c_0(if^#(X, c(), f(true())))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(X)) -> c_0(if^#(X, c(), f(true())))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(X)) -> c_0(if^#(X, c(), f(true())))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c() = [1]
                  true() = [7]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [12]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))}
              Weak Rules: {active^#(f(X)) -> c_0(if^#(X, c(), f(true())))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))}
                Weak Rules: {active^#(f(X)) -> c_0(if^#(X, c(), f(true())))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(5) -> 3
                 , mark_0(6) -> 3
                 , mark_0(9) -> 3
                 , c_0() -> 5
                 , true_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(5) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(5) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , if^#_0(3, 3, 3) -> 13
                 , if^#_0(3, 3, 5) -> 13
                 , if^#_0(3, 3, 6) -> 13
                 , if^#_0(3, 3, 9) -> 13
                 , if^#_0(3, 5, 3) -> 13
                 , if^#_0(3, 5, 5) -> 13
                 , if^#_0(3, 5, 6) -> 13
                 , if^#_0(3, 5, 9) -> 13
                 , if^#_0(3, 6, 3) -> 13
                 , if^#_0(3, 6, 5) -> 13
                 , if^#_0(3, 6, 6) -> 13
                 , if^#_0(3, 6, 9) -> 13
                 , if^#_0(3, 9, 3) -> 13
                 , if^#_0(3, 9, 5) -> 13
                 , if^#_0(3, 9, 6) -> 13
                 , if^#_0(3, 9, 9) -> 13
                 , if^#_0(5, 3, 3) -> 13
                 , if^#_0(5, 3, 5) -> 13
                 , if^#_0(5, 3, 6) -> 13
                 , if^#_0(5, 3, 9) -> 13
                 , if^#_0(5, 5, 3) -> 13
                 , if^#_0(5, 5, 5) -> 13
                 , if^#_0(5, 5, 6) -> 13
                 , if^#_0(5, 5, 9) -> 13
                 , if^#_0(5, 6, 3) -> 13
                 , if^#_0(5, 6, 5) -> 13
                 , if^#_0(5, 6, 6) -> 13
                 , if^#_0(5, 6, 9) -> 13
                 , if^#_0(5, 9, 3) -> 13
                 , if^#_0(5, 9, 5) -> 13
                 , if^#_0(5, 9, 6) -> 13
                 , if^#_0(5, 9, 9) -> 13
                 , if^#_0(6, 3, 3) -> 13
                 , if^#_0(6, 3, 5) -> 13
                 , if^#_0(6, 3, 6) -> 13
                 , if^#_0(6, 3, 9) -> 13
                 , if^#_0(6, 5, 3) -> 13
                 , if^#_0(6, 5, 5) -> 13
                 , if^#_0(6, 5, 6) -> 13
                 , if^#_0(6, 5, 9) -> 13
                 , if^#_0(6, 6, 3) -> 13
                 , if^#_0(6, 6, 5) -> 13
                 , if^#_0(6, 6, 6) -> 13
                 , if^#_0(6, 6, 9) -> 13
                 , if^#_0(6, 9, 3) -> 13
                 , if^#_0(6, 9, 5) -> 13
                 , if^#_0(6, 9, 6) -> 13
                 , if^#_0(6, 9, 9) -> 13
                 , if^#_0(9, 3, 3) -> 13
                 , if^#_0(9, 3, 5) -> 13
                 , if^#_0(9, 3, 6) -> 13
                 , if^#_0(9, 3, 9) -> 13
                 , if^#_0(9, 5, 3) -> 13
                 , if^#_0(9, 5, 5) -> 13
                 , if^#_0(9, 5, 6) -> 13
                 , if^#_0(9, 5, 9) -> 13
                 , if^#_0(9, 6, 3) -> 13
                 , if^#_0(9, 6, 5) -> 13
                 , if^#_0(9, 6, 6) -> 13
                 , if^#_0(9, 6, 9) -> 13
                 , if^#_0(9, 9, 3) -> 13
                 , if^#_0(9, 9, 5) -> 13
                 , if^#_0(9, 9, 6) -> 13
                 , if^#_0(9, 9, 9) -> 13}
      
   14)
      {active^#(if(false(), X, Y)) -> c_2()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c() = [0]
           true() = [0]
           false() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11() = [0]
           c_12() = [0]
           c_13() = [0]
           c_14(x1) = [0] x1 + [0]
           c_15(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_16(x1) = [0] x1 + [0]
           c_17(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(if(false(), X, Y)) -> c_2()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(if(false(), X, Y)) -> c_2()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(if(false(), X, Y)) -> c_2()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(if(false(), X, Y)) -> c_2()}
            
            Details:         
              The given problem does not contain any strict rules
      
   15)
      {active^#(if(true(), X, Y)) -> c_1()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c() = [0]
           true() = [0]
           false() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11() = [0]
           c_12() = [0]
           c_13() = [0]
           c_14(x1) = [0] x1 + [0]
           c_15(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_16(x1) = [0] x1 + [0]
           c_17(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(if(true(), X, Y)) -> c_1()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(if(true(), X, Y)) -> c_1()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(if(true(), X, Y)) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(if(true(), X, Y)) -> c_1()}
            
            Details:         
              The given problem does not contain any strict rules
      
   16)
      {proper^#(true()) -> c_12()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c() = [0]
           true() = [0]
           false() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11() = [0]
           c_12() = [0]
           c_13() = [0]
           c_14(x1) = [0] x1 + [0]
           c_15(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_16(x1) = [0] x1 + [0]
           c_17(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(true()) -> c_12()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(true()) -> c_12()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(true()) -> c_12()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(true()) -> c_12()}
            
            Details:         
              The given problem does not contain any strict rules
      
   17)
      {proper^#(c()) -> c_11()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c() = [0]
           true() = [0]
           false() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11() = [0]
           c_12() = [0]
           c_13() = [0]
           c_14(x1) = [0] x1 + [0]
           c_15(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_16(x1) = [0] x1 + [0]
           c_17(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(c()) -> c_11()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(c()) -> c_11()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(c()) -> c_11()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(c()) -> c_11()}
            
            Details:         
              The given problem does not contain any strict rules
      
   18)
      {proper^#(false()) -> c_13()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c() = [0]
           true() = [0]
           false() = [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11() = [0]
           c_12() = [0]
           c_13() = [0]
           c_14(x1) = [0] x1 + [0]
           c_15(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_16(x1) = [0] x1 + [0]
           c_17(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(false()) -> c_13()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(false()) -> c_13()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(false()) -> c_13()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c() = [0]
                  true() = [0]
                  false() = [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11() = [0]
                  c_12() = [0]
                  c_13() = [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(false()) -> c_13()}
            
            Details:         
              The given problem does not contain any strict rules