'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , f(ok(X)) -> ok(f(X)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X))} Details: We have computed the following set of weak (innermost) dependency pairs: { active^#(f(X)) -> c_0(if^#(X, c(), f(true()))) , active^#(if(true(), X, Y)) -> c_1() , active^#(if(false(), X, Y)) -> c_2() , active^#(f(X)) -> c_3(f^#(active(X))) , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3)) , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3)) , f^#(mark(X)) -> c_6(f^#(X)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , proper^#(f(X)) -> c_9(f^#(proper(X))) , proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3))) , proper^#(c()) -> c_11() , proper^#(true()) -> c_12() , proper^#(false()) -> c_13() , f^#(ok(X)) -> c_14(f^#(X)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , top^#(mark(X)) -> c_16(top^#(proper(X))) , top^#(ok(X)) -> c_17(top^#(active(X)))} The usable rules are: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} The estimated dependency graph contains the following edges: {active^#(f(X)) -> c_0(if^#(X, c(), f(true())))} ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} {active^#(f(X)) -> c_3(f^#(active(X)))} ==> {f^#(ok(X)) -> c_14(f^#(X))} {active^#(f(X)) -> c_3(f^#(active(X)))} ==> {f^#(mark(X)) -> c_6(f^#(X))} {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} ==> {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} ==> {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} ==> {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} ==> {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} {f^#(mark(X)) -> c_6(f^#(X))} ==> {f^#(ok(X)) -> c_14(f^#(X))} {f^#(mark(X)) -> c_6(f^#(X))} ==> {f^#(mark(X)) -> c_6(f^#(X))} {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} ==> {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} ==> {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} ==> {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} ==> {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} {proper^#(f(X)) -> c_9(f^#(proper(X)))} ==> {f^#(ok(X)) -> c_14(f^#(X))} {proper^#(f(X)) -> c_9(f^#(proper(X)))} ==> {f^#(mark(X)) -> c_6(f^#(X))} {proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3)))} ==> {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} {proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3)))} ==> {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} {proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3)))} ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} {f^#(ok(X)) -> c_14(f^#(X))} ==> {f^#(ok(X)) -> c_14(f^#(X))} {f^#(ok(X)) -> c_14(f^#(X))} ==> {f^#(mark(X)) -> c_6(f^#(X))} {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} ==> {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} ==> {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} {if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} ==> {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} {top^#(mark(X)) -> c_16(top^#(proper(X)))} ==> {top^#(ok(X)) -> c_17(top^#(active(X)))} {top^#(mark(X)) -> c_16(top^#(proper(X)))} ==> {top^#(mark(X)) -> c_16(top^#(proper(X)))} {top^#(ok(X)) -> c_17(top^#(active(X)))} ==> {top^#(ok(X)) -> c_17(top^#(active(X)))} {top^#(ok(X)) -> c_17(top^#(active(X)))} ==> {top^#(mark(X)) -> c_16(top^#(proper(X)))} We consider the following path(s): 1) { top^#(mark(X)) -> c_16(top^#(proper(X))) , top^#(ok(X)) -> c_17(top^#(active(X)))} The usable rules for this path are the following: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , top^#(mark(X)) -> c_16(top^#(proper(X))) , top^#(ok(X)) -> c_17(top^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_16(x1) = [1] x1 + [0] c_17(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} and weakly orienting the rules {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [1] x1 + [5] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_16(x1) = [1] x1 + [0] c_17(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {top^#(ok(X)) -> c_17(top^#(active(X)))} and weakly orienting the rules { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {top^#(ok(X)) -> c_17(top^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [1] x1 + [5] ok(x1) = [1] x1 + [5] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [1] c_16(x1) = [1] x1 + [0] c_17(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(if(true(), X, Y)) -> mark(X)} and weakly orienting the rules { top^#(ok(X)) -> c_17(top^#(active(X))) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(if(true(), X, Y)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [8] false() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_16(x1) = [1] x1 + [0] c_17(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(if(false(), X, Y)) -> mark(Y)} and weakly orienting the rules { active(if(true(), X, Y)) -> mark(X) , top^#(ok(X)) -> c_17(top^#(active(X))) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(if(false(), X, Y)) -> mark(Y)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [4] mark(x1) = [1] x1 + [10] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8] c() = [14] true() = [1] false() = [4] proper(x1) = [1] x1 + [10] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_16(x1) = [1] x1 + [3] c_17(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {top^#(mark(X)) -> c_16(top^#(proper(X)))} and weakly orienting the rules { active(if(false(), X, Y)) -> mark(Y) , active(if(true(), X, Y)) -> mark(X) , top^#(ok(X)) -> c_17(top^#(active(X))) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {top^#(mark(X)) -> c_16(top^#(proper(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [5] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8] c() = [0] true() = [8] false() = [2] proper(x1) = [1] x1 + [2] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [7] c_16(x1) = [1] x1 + [0] c_17(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { top^#(mark(X)) -> c_16(top^#(proper(X))) , active(if(false(), X, Y)) -> mark(Y) , active(if(true(), X, Y)) -> mark(X) , top^#(ok(X)) -> c_17(top^#(active(X))) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { top^#(mark(X)) -> c_16(top^#(proper(X))) , active(if(false(), X, Y)) -> mark(Y) , active(if(true(), X, Y)) -> mark(X) , top^#(ok(X)) -> c_17(top^#(active(X))) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { active_0(2) -> 6 , mark_0(2) -> 2 , c_0() -> 2 , true_0() -> 2 , false_0() -> 2 , proper_0(2) -> 4 , ok_0(2) -> 2 , ok_0(2) -> 4 , top^#_0(2) -> 1 , top^#_0(4) -> 3 , top^#_0(6) -> 5 , c_16_0(3) -> 1 , c_17_0(5) -> 1 , c_17_0(5) -> 3} 2) { active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} The usable rules for this path are the following: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} Details: We apply the weight gap principle, strictly orienting the rules {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} and weakly orienting the rules {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} and weakly orienting the rules { if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} and weakly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} and weakly orienting the rules { active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [4] mark(x1) = [1] x1 + [5] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [6] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [14] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [2] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(X)) -> mark(if(X, c(), f(true())))} and weakly orienting the rules { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(X)) -> mark(if(X, c(), f(true())))} Details: Interpretation Functions: active(x1) = [1] x1 + [9] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [1] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [13] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(2) -> 2 , c_0() -> 2 , true_0() -> 2 , false_0() -> 2 , ok_0(2) -> 2 , active^#_0(2) -> 1 , if^#_0(2, 2, 2) -> 1 , c_7_0(1) -> 1 , c_8_0(1) -> 1 , c_15_0(1) -> 1} 3) { active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} The usable rules for this path are the following: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} Details: We apply the weight gap principle, strictly orienting the rules {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} and weakly orienting the rules {if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} and weakly orienting the rules { if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} and weakly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} and weakly orienting the rules { active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [4] mark(x1) = [1] x1 + [5] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [6] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [14] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [2] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(X)) -> mark(if(X, c(), f(true())))} and weakly orienting the rules { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(X)) -> mark(if(X, c(), f(true())))} Details: Interpretation Functions: active(x1) = [1] x1 + [9] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [1] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [13] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(2) -> 2 , c_0() -> 2 , true_0() -> 2 , false_0() -> 2 , ok_0(2) -> 2 , active^#_0(2) -> 1 , if^#_0(2, 2, 2) -> 1 , c_7_0(1) -> 1 , c_8_0(1) -> 1 , c_15_0(1) -> 1} 4) { active^#(f(X)) -> c_3(f^#(active(X))) , f^#(ok(X)) -> c_14(f^#(X)) , f^#(mark(X)) -> c_6(f^#(X))} The usable rules for this path are the following: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(f(X)) -> c_3(f^#(active(X))) , f^#(ok(X)) -> c_14(f^#(X)) , f^#(mark(X)) -> c_6(f^#(X))} Details: We apply the weight gap principle, strictly orienting the rules { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [1] x1 + [1] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , f^#(ok(X)) -> c_14(f^#(X))} and weakly orienting the rules { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , f^#(ok(X)) -> c_14(f^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [12] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [1] x1 + [1] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(mark(X)) -> c_6(f^#(X))} and weakly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , f^#(ok(X)) -> c_14(f^#(X)) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(mark(X)) -> c_6(f^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [1] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(f(X)) -> c_3(f^#(active(X)))} and weakly orienting the rules { f^#(mark(X)) -> c_6(f^#(X)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , f^#(ok(X)) -> c_14(f^#(X)) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(X)) -> c_3(f^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [3] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [1] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(X)) -> mark(if(X, c(), f(true())))} and weakly orienting the rules { active^#(f(X)) -> c_3(f^#(active(X))) , f^#(mark(X)) -> c_6(f^#(X)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , f^#(ok(X)) -> c_14(f^#(X)) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(X)) -> mark(if(X, c(), f(true())))} Details: Interpretation Functions: active(x1) = [1] x1 + [6] f(x1) = [1] x1 + [10] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [1] false() = [9] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [7] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [13] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [14] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [1] x1 + [5] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active^#(f(X)) -> c_3(f^#(active(X))) , f^#(mark(X)) -> c_6(f^#(X)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , f^#(ok(X)) -> c_14(f^#(X)) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active^#(f(X)) -> c_3(f^#(active(X))) , f^#(mark(X)) -> c_6(f^#(X)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , f^#(ok(X)) -> c_14(f^#(X)) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(6) -> 3 , mark_0(7) -> 3 , mark_0(9) -> 3 , c_0() -> 5 , true_0() -> 6 , false_0() -> 7 , ok_0(3) -> 9 , ok_0(5) -> 9 , ok_0(6) -> 9 , ok_0(7) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(5) -> 11 , active^#_0(6) -> 11 , active^#_0(7) -> 11 , active^#_0(9) -> 11 , f^#_0(3) -> 17 , f^#_0(5) -> 17 , f^#_0(6) -> 17 , f^#_0(7) -> 17 , f^#_0(9) -> 17 , c_6_0(17) -> 17 , c_14_0(17) -> 17} 5) { proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3))) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3))) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} Details: We apply the weight gap principle, strictly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} and weakly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [4] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3)))} and weakly orienting the rules { if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [9] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} and weakly orienting the rules { proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3))) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [1] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [13] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [8] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3))) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3))) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(2) -> 2 , c_0() -> 2 , true_0() -> 2 , false_0() -> 2 , ok_0(2) -> 2 , if^#_0(2, 2, 2) -> 1 , c_7_0(1) -> 1 , c_8_0(1) -> 1 , proper^#_0(2) -> 1 , c_15_0(1) -> 1} 6) { proper^#(f(X)) -> c_9(f^#(proper(X))) , f^#(ok(X)) -> c_14(f^#(X)) , f^#(mark(X)) -> c_6(f^#(X))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , proper^#(f(X)) -> c_9(f^#(proper(X))) , f^#(ok(X)) -> c_14(f^#(X)) , f^#(mark(X)) -> c_6(f^#(X))} Details: We apply the weight gap principle, strictly orienting the rules { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_9(x1) = [1] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [1] x1 + [1] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(f(X)) -> c_9(f^#(proper(X)))} and weakly orienting the rules { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(f(X)) -> c_9(f^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [8] true() = [0] false() = [3] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [2] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [9] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_9(x1) = [1] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [1] x1 + [9] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , f^#(mark(X)) -> c_6(f^#(X))} and weakly orienting the rules { proper^#(f(X)) -> c_9(f^#(proper(X))) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , f^#(mark(X)) -> c_6(f^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [10] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4] c() = [5] true() = [8] false() = [5] proper(x1) = [1] x1 + [9] ok(x1) = [1] x1 + [6] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [2] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [13] c_9(x1) = [1] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [1] x1 + [9] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(ok(X)) -> c_14(f^#(X))} and weakly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , f^#(mark(X)) -> c_6(f^#(X)) , proper^#(f(X)) -> c_9(f^#(proper(X))) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(ok(X)) -> c_14(f^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [4] true() = [0] false() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [7] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_9(x1) = [1] x1 + [1] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [1] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { f^#(ok(X)) -> c_14(f^#(X)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , f^#(mark(X)) -> c_6(f^#(X)) , proper^#(f(X)) -> c_9(f^#(proper(X))) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { f^#(ok(X)) -> c_14(f^#(X)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , f^#(mark(X)) -> c_6(f^#(X)) , proper^#(f(X)) -> c_9(f^#(proper(X))) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(6) -> 3 , mark_0(7) -> 3 , mark_0(9) -> 3 , c_0() -> 5 , true_0() -> 6 , false_0() -> 7 , ok_0(3) -> 9 , ok_0(5) -> 9 , ok_0(6) -> 9 , ok_0(7) -> 9 , ok_0(9) -> 9 , f^#_0(3) -> 17 , f^#_0(5) -> 17 , f^#_0(6) -> 17 , f^#_0(7) -> 17 , f^#_0(9) -> 17 , c_6_0(17) -> 17 , proper^#_0(3) -> 23 , proper^#_0(5) -> 23 , proper^#_0(6) -> 23 , proper^#_0(7) -> 23 , proper^#_0(9) -> 23 , c_14_0(17) -> 17} 7) {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} The usable rules for this path are the following: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} and weakly orienting the rules {active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [4] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} and weakly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [15] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(X)) -> mark(if(X, c(), f(true())))} and weakly orienting the rules { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(X)) -> mark(if(X, c(), f(true())))} Details: Interpretation Functions: active(x1) = [1] x1 + [5] f(x1) = [1] x1 + [4] mark(x1) = [1] x1 + [4] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [12] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [5] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(if(X1, X2, X3)) -> c_4(if^#(active(X1), X2, X3))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(6) -> 3 , mark_0(7) -> 3 , mark_0(9) -> 3 , c_0() -> 5 , true_0() -> 6 , false_0() -> 7 , ok_0(3) -> 9 , ok_0(5) -> 9 , ok_0(6) -> 9 , ok_0(7) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(5) -> 11 , active^#_0(6) -> 11 , active^#_0(7) -> 11 , active^#_0(9) -> 11 , if^#_0(3, 3, 3) -> 13 , if^#_0(3, 3, 5) -> 13 , if^#_0(3, 3, 6) -> 13 , if^#_0(3, 3, 7) -> 13 , if^#_0(3, 3, 9) -> 13 , if^#_0(3, 5, 3) -> 13 , if^#_0(3, 5, 5) -> 13 , if^#_0(3, 5, 6) -> 13 , if^#_0(3, 5, 7) -> 13 , if^#_0(3, 5, 9) -> 13 , if^#_0(3, 6, 3) -> 13 , if^#_0(3, 6, 5) -> 13 , if^#_0(3, 6, 6) -> 13 , if^#_0(3, 6, 7) -> 13 , if^#_0(3, 6, 9) -> 13 , if^#_0(3, 7, 3) -> 13 , if^#_0(3, 7, 5) -> 13 , if^#_0(3, 7, 6) -> 13 , if^#_0(3, 7, 7) -> 13 , if^#_0(3, 7, 9) -> 13 , if^#_0(3, 9, 3) -> 13 , if^#_0(3, 9, 5) -> 13 , if^#_0(3, 9, 6) -> 13 , if^#_0(3, 9, 7) -> 13 , if^#_0(3, 9, 9) -> 13 , if^#_0(5, 3, 3) -> 13 , if^#_0(5, 3, 5) -> 13 , if^#_0(5, 3, 6) -> 13 , if^#_0(5, 3, 7) -> 13 , if^#_0(5, 3, 9) -> 13 , if^#_0(5, 5, 3) -> 13 , if^#_0(5, 5, 5) -> 13 , if^#_0(5, 5, 6) -> 13 , if^#_0(5, 5, 7) -> 13 , if^#_0(5, 5, 9) -> 13 , if^#_0(5, 6, 3) -> 13 , if^#_0(5, 6, 5) -> 13 , if^#_0(5, 6, 6) -> 13 , if^#_0(5, 6, 7) -> 13 , if^#_0(5, 6, 9) -> 13 , if^#_0(5, 7, 3) -> 13 , if^#_0(5, 7, 5) -> 13 , if^#_0(5, 7, 6) -> 13 , if^#_0(5, 7, 7) -> 13 , if^#_0(5, 7, 9) -> 13 , if^#_0(5, 9, 3) -> 13 , if^#_0(5, 9, 5) -> 13 , if^#_0(5, 9, 6) -> 13 , if^#_0(5, 9, 7) -> 13 , if^#_0(5, 9, 9) -> 13 , if^#_0(6, 3, 3) -> 13 , if^#_0(6, 3, 5) -> 13 , if^#_0(6, 3, 6) -> 13 , if^#_0(6, 3, 7) -> 13 , if^#_0(6, 3, 9) -> 13 , if^#_0(6, 5, 3) -> 13 , if^#_0(6, 5, 5) -> 13 , if^#_0(6, 5, 6) -> 13 , if^#_0(6, 5, 7) -> 13 , if^#_0(6, 5, 9) -> 13 , if^#_0(6, 6, 3) -> 13 , if^#_0(6, 6, 5) -> 13 , if^#_0(6, 6, 6) -> 13 , if^#_0(6, 6, 7) -> 13 , if^#_0(6, 6, 9) -> 13 , if^#_0(6, 7, 3) -> 13 , if^#_0(6, 7, 5) -> 13 , if^#_0(6, 7, 6) -> 13 , if^#_0(6, 7, 7) -> 13 , if^#_0(6, 7, 9) -> 13 , if^#_0(6, 9, 3) -> 13 , if^#_0(6, 9, 5) -> 13 , if^#_0(6, 9, 6) -> 13 , if^#_0(6, 9, 7) -> 13 , if^#_0(6, 9, 9) -> 13 , if^#_0(7, 3, 3) -> 13 , if^#_0(7, 3, 5) -> 13 , if^#_0(7, 3, 6) -> 13 , if^#_0(7, 3, 7) -> 13 , if^#_0(7, 3, 9) -> 13 , if^#_0(7, 5, 3) -> 13 , if^#_0(7, 5, 5) -> 13 , if^#_0(7, 5, 6) -> 13 , if^#_0(7, 5, 7) -> 13 , if^#_0(7, 5, 9) -> 13 , if^#_0(7, 6, 3) -> 13 , if^#_0(7, 6, 5) -> 13 , if^#_0(7, 6, 6) -> 13 , if^#_0(7, 6, 7) -> 13 , if^#_0(7, 6, 9) -> 13 , if^#_0(7, 7, 3) -> 13 , if^#_0(7, 7, 5) -> 13 , if^#_0(7, 7, 6) -> 13 , if^#_0(7, 7, 7) -> 13 , if^#_0(7, 7, 9) -> 13 , if^#_0(7, 9, 3) -> 13 , if^#_0(7, 9, 5) -> 13 , if^#_0(7, 9, 6) -> 13 , if^#_0(7, 9, 7) -> 13 , if^#_0(7, 9, 9) -> 13 , if^#_0(9, 3, 3) -> 13 , if^#_0(9, 3, 5) -> 13 , if^#_0(9, 3, 6) -> 13 , if^#_0(9, 3, 7) -> 13 , if^#_0(9, 3, 9) -> 13 , if^#_0(9, 5, 3) -> 13 , if^#_0(9, 5, 5) -> 13 , if^#_0(9, 5, 6) -> 13 , if^#_0(9, 5, 7) -> 13 , if^#_0(9, 5, 9) -> 13 , if^#_0(9, 6, 3) -> 13 , if^#_0(9, 6, 5) -> 13 , if^#_0(9, 6, 6) -> 13 , if^#_0(9, 6, 7) -> 13 , if^#_0(9, 6, 9) -> 13 , if^#_0(9, 7, 3) -> 13 , if^#_0(9, 7, 5) -> 13 , if^#_0(9, 7, 6) -> 13 , if^#_0(9, 7, 7) -> 13 , if^#_0(9, 7, 9) -> 13 , if^#_0(9, 9, 3) -> 13 , if^#_0(9, 9, 5) -> 13 , if^#_0(9, 9, 6) -> 13 , if^#_0(9, 9, 7) -> 13 , if^#_0(9, 9, 9) -> 13} 8) {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} The usable rules for this path are the following: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} and weakly orienting the rules {active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [4] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} and weakly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [15] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(X)) -> mark(if(X, c(), f(true())))} and weakly orienting the rules { active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(X)) -> mark(if(X, c(), f(true())))} Details: Interpretation Functions: active(x1) = [1] x1 + [5] f(x1) = [1] x1 + [4] mark(x1) = [1] x1 + [4] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [12] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [5] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(if(X1, X2, X3)) -> c_5(if^#(X1, active(X2), X3))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(6) -> 3 , mark_0(7) -> 3 , mark_0(9) -> 3 , c_0() -> 5 , true_0() -> 6 , false_0() -> 7 , ok_0(3) -> 9 , ok_0(5) -> 9 , ok_0(6) -> 9 , ok_0(7) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(5) -> 11 , active^#_0(6) -> 11 , active^#_0(7) -> 11 , active^#_0(9) -> 11 , if^#_0(3, 3, 3) -> 13 , if^#_0(3, 3, 5) -> 13 , if^#_0(3, 3, 6) -> 13 , if^#_0(3, 3, 7) -> 13 , if^#_0(3, 3, 9) -> 13 , if^#_0(3, 5, 3) -> 13 , if^#_0(3, 5, 5) -> 13 , if^#_0(3, 5, 6) -> 13 , if^#_0(3, 5, 7) -> 13 , if^#_0(3, 5, 9) -> 13 , if^#_0(3, 6, 3) -> 13 , if^#_0(3, 6, 5) -> 13 , if^#_0(3, 6, 6) -> 13 , if^#_0(3, 6, 7) -> 13 , if^#_0(3, 6, 9) -> 13 , if^#_0(3, 7, 3) -> 13 , if^#_0(3, 7, 5) -> 13 , if^#_0(3, 7, 6) -> 13 , if^#_0(3, 7, 7) -> 13 , if^#_0(3, 7, 9) -> 13 , if^#_0(3, 9, 3) -> 13 , if^#_0(3, 9, 5) -> 13 , if^#_0(3, 9, 6) -> 13 , if^#_0(3, 9, 7) -> 13 , if^#_0(3, 9, 9) -> 13 , if^#_0(5, 3, 3) -> 13 , if^#_0(5, 3, 5) -> 13 , if^#_0(5, 3, 6) -> 13 , if^#_0(5, 3, 7) -> 13 , if^#_0(5, 3, 9) -> 13 , if^#_0(5, 5, 3) -> 13 , if^#_0(5, 5, 5) -> 13 , if^#_0(5, 5, 6) -> 13 , if^#_0(5, 5, 7) -> 13 , if^#_0(5, 5, 9) -> 13 , if^#_0(5, 6, 3) -> 13 , if^#_0(5, 6, 5) -> 13 , if^#_0(5, 6, 6) -> 13 , if^#_0(5, 6, 7) -> 13 , if^#_0(5, 6, 9) -> 13 , if^#_0(5, 7, 3) -> 13 , if^#_0(5, 7, 5) -> 13 , if^#_0(5, 7, 6) -> 13 , if^#_0(5, 7, 7) -> 13 , if^#_0(5, 7, 9) -> 13 , if^#_0(5, 9, 3) -> 13 , if^#_0(5, 9, 5) -> 13 , if^#_0(5, 9, 6) -> 13 , if^#_0(5, 9, 7) -> 13 , if^#_0(5, 9, 9) -> 13 , if^#_0(6, 3, 3) -> 13 , if^#_0(6, 3, 5) -> 13 , if^#_0(6, 3, 6) -> 13 , if^#_0(6, 3, 7) -> 13 , if^#_0(6, 3, 9) -> 13 , if^#_0(6, 5, 3) -> 13 , if^#_0(6, 5, 5) -> 13 , if^#_0(6, 5, 6) -> 13 , if^#_0(6, 5, 7) -> 13 , if^#_0(6, 5, 9) -> 13 , if^#_0(6, 6, 3) -> 13 , if^#_0(6, 6, 5) -> 13 , if^#_0(6, 6, 6) -> 13 , if^#_0(6, 6, 7) -> 13 , if^#_0(6, 6, 9) -> 13 , if^#_0(6, 7, 3) -> 13 , if^#_0(6, 7, 5) -> 13 , if^#_0(6, 7, 6) -> 13 , if^#_0(6, 7, 7) -> 13 , if^#_0(6, 7, 9) -> 13 , if^#_0(6, 9, 3) -> 13 , if^#_0(6, 9, 5) -> 13 , if^#_0(6, 9, 6) -> 13 , if^#_0(6, 9, 7) -> 13 , if^#_0(6, 9, 9) -> 13 , if^#_0(7, 3, 3) -> 13 , if^#_0(7, 3, 5) -> 13 , if^#_0(7, 3, 6) -> 13 , if^#_0(7, 3, 7) -> 13 , if^#_0(7, 3, 9) -> 13 , if^#_0(7, 5, 3) -> 13 , if^#_0(7, 5, 5) -> 13 , if^#_0(7, 5, 6) -> 13 , if^#_0(7, 5, 7) -> 13 , if^#_0(7, 5, 9) -> 13 , if^#_0(7, 6, 3) -> 13 , if^#_0(7, 6, 5) -> 13 , if^#_0(7, 6, 6) -> 13 , if^#_0(7, 6, 7) -> 13 , if^#_0(7, 6, 9) -> 13 , if^#_0(7, 7, 3) -> 13 , if^#_0(7, 7, 5) -> 13 , if^#_0(7, 7, 6) -> 13 , if^#_0(7, 7, 7) -> 13 , if^#_0(7, 7, 9) -> 13 , if^#_0(7, 9, 3) -> 13 , if^#_0(7, 9, 5) -> 13 , if^#_0(7, 9, 6) -> 13 , if^#_0(7, 9, 7) -> 13 , if^#_0(7, 9, 9) -> 13 , if^#_0(9, 3, 3) -> 13 , if^#_0(9, 3, 5) -> 13 , if^#_0(9, 3, 6) -> 13 , if^#_0(9, 3, 7) -> 13 , if^#_0(9, 3, 9) -> 13 , if^#_0(9, 5, 3) -> 13 , if^#_0(9, 5, 5) -> 13 , if^#_0(9, 5, 6) -> 13 , if^#_0(9, 5, 7) -> 13 , if^#_0(9, 5, 9) -> 13 , if^#_0(9, 6, 3) -> 13 , if^#_0(9, 6, 5) -> 13 , if^#_0(9, 6, 6) -> 13 , if^#_0(9, 6, 7) -> 13 , if^#_0(9, 6, 9) -> 13 , if^#_0(9, 7, 3) -> 13 , if^#_0(9, 7, 5) -> 13 , if^#_0(9, 7, 6) -> 13 , if^#_0(9, 7, 7) -> 13 , if^#_0(9, 7, 9) -> 13 , if^#_0(9, 9, 3) -> 13 , if^#_0(9, 9, 5) -> 13 , if^#_0(9, 9, 6) -> 13 , if^#_0(9, 9, 7) -> 13 , if^#_0(9, 9, 9) -> 13} 9) {active^#(f(X)) -> c_3(f^#(active(X)))} The usable rules for this path are the following: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(f(X)) -> c_3(f^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(f(X)) -> c_3(f^#(active(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(X)) -> c_3(f^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} and weakly orienting the rules {active^#(f(X)) -> c_3(f^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [1] x1 + [8] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(if(false(), X, Y)) -> mark(Y)} and weakly orienting the rules { if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(f(X)) -> c_3(f^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(if(false(), X, Y)) -> mark(Y)} Details: Interpretation Functions: active(x1) = [1] x1 + [0] f(x1) = [1] x1 + [12] mark(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [8] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [3] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [4] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X)} and weakly orienting the rules { active(if(false(), X, Y)) -> mark(Y) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(f(X)) -> c_3(f^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(f(X)) -> c_3(f^#(active(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(if(X1, X2, X3)) -> if(active(X1), X2, X3) , active(if(X1, X2, X3)) -> if(X1, active(X2), X3) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { active(f(X)) -> mark(if(X, c(), f(true()))) , active(if(true(), X, Y)) -> mark(X) , active(if(false(), X, Y)) -> mark(Y) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , active^#(f(X)) -> c_3(f^#(active(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(6) -> 3 , mark_0(7) -> 3 , mark_0(9) -> 3 , c_0() -> 5 , true_0() -> 6 , false_0() -> 7 , ok_0(3) -> 9 , ok_0(5) -> 9 , ok_0(6) -> 9 , ok_0(7) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(5) -> 11 , active^#_0(6) -> 11 , active^#_0(7) -> 11 , active^#_0(9) -> 11 , f^#_0(3) -> 17 , f^#_0(5) -> 17 , f^#_0(6) -> 17 , f^#_0(7) -> 17 , f^#_0(9) -> 17} 10) {proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3)))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3)))} Details: We apply the weight gap principle, strictly orienting the rules {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [4] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3)))} and weakly orienting the rules {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [4] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} and weakly orienting the rules { proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3))) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [15] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [1] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3))) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , proper^#(if(X1, X2, X3)) -> c_10(if^#(proper(X1), proper(X2), proper(X3))) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(6) -> 3 , mark_0(7) -> 3 , mark_0(9) -> 3 , c_0() -> 5 , true_0() -> 6 , false_0() -> 7 , ok_0(3) -> 9 , ok_0(5) -> 9 , ok_0(6) -> 9 , ok_0(7) -> 9 , ok_0(9) -> 9 , if^#_0(3, 3, 3) -> 13 , if^#_0(3, 3, 5) -> 13 , if^#_0(3, 3, 6) -> 13 , if^#_0(3, 3, 7) -> 13 , if^#_0(3, 3, 9) -> 13 , if^#_0(3, 5, 3) -> 13 , if^#_0(3, 5, 5) -> 13 , if^#_0(3, 5, 6) -> 13 , if^#_0(3, 5, 7) -> 13 , if^#_0(3, 5, 9) -> 13 , if^#_0(3, 6, 3) -> 13 , if^#_0(3, 6, 5) -> 13 , if^#_0(3, 6, 6) -> 13 , if^#_0(3, 6, 7) -> 13 , if^#_0(3, 6, 9) -> 13 , if^#_0(3, 7, 3) -> 13 , if^#_0(3, 7, 5) -> 13 , if^#_0(3, 7, 6) -> 13 , if^#_0(3, 7, 7) -> 13 , if^#_0(3, 7, 9) -> 13 , if^#_0(3, 9, 3) -> 13 , if^#_0(3, 9, 5) -> 13 , if^#_0(3, 9, 6) -> 13 , if^#_0(3, 9, 7) -> 13 , if^#_0(3, 9, 9) -> 13 , if^#_0(5, 3, 3) -> 13 , if^#_0(5, 3, 5) -> 13 , if^#_0(5, 3, 6) -> 13 , if^#_0(5, 3, 7) -> 13 , if^#_0(5, 3, 9) -> 13 , if^#_0(5, 5, 3) -> 13 , if^#_0(5, 5, 5) -> 13 , if^#_0(5, 5, 6) -> 13 , if^#_0(5, 5, 7) -> 13 , if^#_0(5, 5, 9) -> 13 , if^#_0(5, 6, 3) -> 13 , if^#_0(5, 6, 5) -> 13 , if^#_0(5, 6, 6) -> 13 , if^#_0(5, 6, 7) -> 13 , if^#_0(5, 6, 9) -> 13 , if^#_0(5, 7, 3) -> 13 , if^#_0(5, 7, 5) -> 13 , if^#_0(5, 7, 6) -> 13 , if^#_0(5, 7, 7) -> 13 , if^#_0(5, 7, 9) -> 13 , if^#_0(5, 9, 3) -> 13 , if^#_0(5, 9, 5) -> 13 , if^#_0(5, 9, 6) -> 13 , if^#_0(5, 9, 7) -> 13 , if^#_0(5, 9, 9) -> 13 , if^#_0(6, 3, 3) -> 13 , if^#_0(6, 3, 5) -> 13 , if^#_0(6, 3, 6) -> 13 , if^#_0(6, 3, 7) -> 13 , if^#_0(6, 3, 9) -> 13 , if^#_0(6, 5, 3) -> 13 , if^#_0(6, 5, 5) -> 13 , if^#_0(6, 5, 6) -> 13 , if^#_0(6, 5, 7) -> 13 , if^#_0(6, 5, 9) -> 13 , if^#_0(6, 6, 3) -> 13 , if^#_0(6, 6, 5) -> 13 , if^#_0(6, 6, 6) -> 13 , if^#_0(6, 6, 7) -> 13 , if^#_0(6, 6, 9) -> 13 , if^#_0(6, 7, 3) -> 13 , if^#_0(6, 7, 5) -> 13 , if^#_0(6, 7, 6) -> 13 , if^#_0(6, 7, 7) -> 13 , if^#_0(6, 7, 9) -> 13 , if^#_0(6, 9, 3) -> 13 , if^#_0(6, 9, 5) -> 13 , if^#_0(6, 9, 6) -> 13 , if^#_0(6, 9, 7) -> 13 , if^#_0(6, 9, 9) -> 13 , if^#_0(7, 3, 3) -> 13 , if^#_0(7, 3, 5) -> 13 , if^#_0(7, 3, 6) -> 13 , if^#_0(7, 3, 7) -> 13 , if^#_0(7, 3, 9) -> 13 , if^#_0(7, 5, 3) -> 13 , if^#_0(7, 5, 5) -> 13 , if^#_0(7, 5, 6) -> 13 , if^#_0(7, 5, 7) -> 13 , if^#_0(7, 5, 9) -> 13 , if^#_0(7, 6, 3) -> 13 , if^#_0(7, 6, 5) -> 13 , if^#_0(7, 6, 6) -> 13 , if^#_0(7, 6, 7) -> 13 , if^#_0(7, 6, 9) -> 13 , if^#_0(7, 7, 3) -> 13 , if^#_0(7, 7, 5) -> 13 , if^#_0(7, 7, 6) -> 13 , if^#_0(7, 7, 7) -> 13 , if^#_0(7, 7, 9) -> 13 , if^#_0(7, 9, 3) -> 13 , if^#_0(7, 9, 5) -> 13 , if^#_0(7, 9, 6) -> 13 , if^#_0(7, 9, 7) -> 13 , if^#_0(7, 9, 9) -> 13 , if^#_0(9, 3, 3) -> 13 , if^#_0(9, 3, 5) -> 13 , if^#_0(9, 3, 6) -> 13 , if^#_0(9, 3, 7) -> 13 , if^#_0(9, 3, 9) -> 13 , if^#_0(9, 5, 3) -> 13 , if^#_0(9, 5, 5) -> 13 , if^#_0(9, 5, 6) -> 13 , if^#_0(9, 5, 7) -> 13 , if^#_0(9, 5, 9) -> 13 , if^#_0(9, 6, 3) -> 13 , if^#_0(9, 6, 5) -> 13 , if^#_0(9, 6, 6) -> 13 , if^#_0(9, 6, 7) -> 13 , if^#_0(9, 6, 9) -> 13 , if^#_0(9, 7, 3) -> 13 , if^#_0(9, 7, 5) -> 13 , if^#_0(9, 7, 6) -> 13 , if^#_0(9, 7, 7) -> 13 , if^#_0(9, 7, 9) -> 13 , if^#_0(9, 9, 3) -> 13 , if^#_0(9, 9, 5) -> 13 , if^#_0(9, 9, 6) -> 13 , if^#_0(9, 9, 7) -> 13 , if^#_0(9, 9, 9) -> 13 , proper^#_0(3) -> 23 , proper^#_0(5) -> 23 , proper^#_0(6) -> 23 , proper^#_0(7) -> 23 , proper^#_0(9) -> 23} 11) {proper^#(f(X)) -> c_9(f^#(proper(X)))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) , proper^#(f(X)) -> c_9(f^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [4] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [9] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_9(x1) = [1] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(f(X)) -> c_9(f^#(proper(X)))} and weakly orienting the rules {if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(f(X)) -> c_9(f^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_9(x1) = [1] x1 + [1] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} and weakly orienting the rules { proper^#(f(X)) -> c_9(f^#(proper(X))) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [15] true() = [0] false() = [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [4] c_9(x1) = [1] x1 + [2] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , proper^#(f(X)) -> c_9(f^#(proper(X))) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) , if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))} Weak Rules: { proper(c()) -> ok(c()) , proper(true()) -> ok(true()) , proper(false()) -> ok(false()) , proper^#(f(X)) -> c_9(f^#(proper(X))) , if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(6) -> 3 , mark_0(7) -> 3 , mark_0(9) -> 3 , c_0() -> 5 , true_0() -> 6 , false_0() -> 7 , ok_0(3) -> 9 , ok_0(5) -> 9 , ok_0(6) -> 9 , ok_0(7) -> 9 , ok_0(9) -> 9 , f^#_0(3) -> 17 , f^#_0(5) -> 17 , f^#_0(6) -> 17 , f^#_0(7) -> 17 , f^#_0(9) -> 17 , proper^#_0(3) -> 23 , proper^#_0(5) -> 23 , proper^#_0(6) -> 23 , proper^#_0(7) -> 23 , proper^#_0(9) -> 23} 12) { active^#(f(X)) -> c_0(if^#(X, c(), f(true()))) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} The usable rules for this path are the following: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , active^#(f(X)) -> c_0(if^#(X, c(), f(true()))) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} Details: We apply the weight gap principle, strictly orienting the rules { active^#(f(X)) -> c_0(if^#(X, c(), f(true()))) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active^#(f(X)) -> c_0(if^#(X, c(), f(true()))) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [2] if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c() = [2] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [3] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] c_8(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: { active^#(f(X)) -> c_0(if^#(X, c(), f(true()))) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: { active^#(f(X)) -> c_0(if^#(X, c(), f(true()))) , if^#(mark(X1), X2, X3) -> c_7(if^#(X1, X2, X3)) , if^#(ok(X1), ok(X2), ok(X3)) -> c_15(if^#(X1, X2, X3)) , if^#(X1, mark(X2), X3) -> c_8(if^#(X1, X2, X3))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(2) -> 2 , c_0() -> 2 , true_0() -> 2 , ok_0(2) -> 2 , active^#_0(2) -> 1 , if^#_0(2, 2, 2) -> 1 , c_7_0(1) -> 1 , c_8_0(1) -> 1 , c_15_0(1) -> 1} 13) {active^#(f(X)) -> c_0(if^#(X, c(), f(true())))} The usable rules for this path are the following: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , active^#(f(X)) -> c_0(if^#(X, c(), f(true())))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(f(X)) -> c_0(if^#(X, c(), f(true())))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(X)) -> c_0(if^#(X, c(), f(true())))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c() = [1] true() = [7] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [12] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: {active^#(f(X)) -> c_0(if^#(X, c(), f(true())))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X))} Weak Rules: {active^#(f(X)) -> c_0(if^#(X, c(), f(true())))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(5) -> 3 , mark_0(6) -> 3 , mark_0(9) -> 3 , c_0() -> 5 , true_0() -> 6 , ok_0(3) -> 9 , ok_0(5) -> 9 , ok_0(6) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(5) -> 11 , active^#_0(6) -> 11 , active^#_0(9) -> 11 , if^#_0(3, 3, 3) -> 13 , if^#_0(3, 3, 5) -> 13 , if^#_0(3, 3, 6) -> 13 , if^#_0(3, 3, 9) -> 13 , if^#_0(3, 5, 3) -> 13 , if^#_0(3, 5, 5) -> 13 , if^#_0(3, 5, 6) -> 13 , if^#_0(3, 5, 9) -> 13 , if^#_0(3, 6, 3) -> 13 , if^#_0(3, 6, 5) -> 13 , if^#_0(3, 6, 6) -> 13 , if^#_0(3, 6, 9) -> 13 , if^#_0(3, 9, 3) -> 13 , if^#_0(3, 9, 5) -> 13 , if^#_0(3, 9, 6) -> 13 , if^#_0(3, 9, 9) -> 13 , if^#_0(5, 3, 3) -> 13 , if^#_0(5, 3, 5) -> 13 , if^#_0(5, 3, 6) -> 13 , if^#_0(5, 3, 9) -> 13 , if^#_0(5, 5, 3) -> 13 , if^#_0(5, 5, 5) -> 13 , if^#_0(5, 5, 6) -> 13 , if^#_0(5, 5, 9) -> 13 , if^#_0(5, 6, 3) -> 13 , if^#_0(5, 6, 5) -> 13 , if^#_0(5, 6, 6) -> 13 , if^#_0(5, 6, 9) -> 13 , if^#_0(5, 9, 3) -> 13 , if^#_0(5, 9, 5) -> 13 , if^#_0(5, 9, 6) -> 13 , if^#_0(5, 9, 9) -> 13 , if^#_0(6, 3, 3) -> 13 , if^#_0(6, 3, 5) -> 13 , if^#_0(6, 3, 6) -> 13 , if^#_0(6, 3, 9) -> 13 , if^#_0(6, 5, 3) -> 13 , if^#_0(6, 5, 5) -> 13 , if^#_0(6, 5, 6) -> 13 , if^#_0(6, 5, 9) -> 13 , if^#_0(6, 6, 3) -> 13 , if^#_0(6, 6, 5) -> 13 , if^#_0(6, 6, 6) -> 13 , if^#_0(6, 6, 9) -> 13 , if^#_0(6, 9, 3) -> 13 , if^#_0(6, 9, 5) -> 13 , if^#_0(6, 9, 6) -> 13 , if^#_0(6, 9, 9) -> 13 , if^#_0(9, 3, 3) -> 13 , if^#_0(9, 3, 5) -> 13 , if^#_0(9, 3, 6) -> 13 , if^#_0(9, 3, 9) -> 13 , if^#_0(9, 5, 3) -> 13 , if^#_0(9, 5, 5) -> 13 , if^#_0(9, 5, 6) -> 13 , if^#_0(9, 5, 9) -> 13 , if^#_0(9, 6, 3) -> 13 , if^#_0(9, 6, 5) -> 13 , if^#_0(9, 6, 6) -> 13 , if^#_0(9, 6, 9) -> 13 , if^#_0(9, 9, 3) -> 13 , if^#_0(9, 9, 5) -> 13 , if^#_0(9, 9, 6) -> 13 , if^#_0(9, 9, 9) -> 13} 14) {active^#(if(false(), X, Y)) -> c_2()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {active^#(if(false(), X, Y)) -> c_2()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {active^#(if(false(), X, Y)) -> c_2()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(if(false(), X, Y)) -> c_2()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {active^#(if(false(), X, Y)) -> c_2()} Details: The given problem does not contain any strict rules 15) {active^#(if(true(), X, Y)) -> c_1()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {active^#(if(true(), X, Y)) -> c_1()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {active^#(if(true(), X, Y)) -> c_1()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(if(true(), X, Y)) -> c_1()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {active^#(if(true(), X, Y)) -> c_1()} Details: The given problem does not contain any strict rules 16) {proper^#(true()) -> c_12()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {proper^#(true()) -> c_12()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(true()) -> c_12()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(true()) -> c_12()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {proper^#(true()) -> c_12()} Details: The given problem does not contain any strict rules 17) {proper^#(c()) -> c_11()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {proper^#(c()) -> c_11()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(c()) -> c_11()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(c()) -> c_11()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {proper^#(c()) -> c_11()} Details: The given problem does not contain any strict rules 18) {proper^#(false()) -> c_13()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {proper^#(false()) -> c_13()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(false()) -> c_13()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(false()) -> c_13()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c() = [0] true() = [0] false() = [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0] c_1() = [0] c_2() = [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11() = [0] c_12() = [0] c_13() = [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {proper^#(false()) -> c_13()} Details: The given problem does not contain any strict rules